
DISTRIBUTED SIMULATION WITH JAVAGPSS
BASED ON THE HIGH LEVEL ARCHITECTURE

Ulrich Klein, Steffen Straßburger, Jürgen Beikirch
Institute for Simulation and Graphics (ISG), Faculty of Computer Science

Otto-von-Guericke University Magdeburg
Universitaetsplatz 2
D-39106 Magdeburg

email: {uklein@isg, strassbu@sunpool, beikirch@sunpool}.cs.uni-magdeburg.de

KEYWORDS

Discrete Simulation, High Level Architecture,
GPSS/H, Interactive Simulation, Java, Internet.

ABSTRACT

This paper focuses on the High Level Architecture for
reusable and interoperable distributed simulation, plat-
form independence, and how classical simulation tools
can fit into this new arena. The current integration efforts
focus on GPSS/H and SLX; in this paper the GPSS/H
track is described. The experiences using the standard
GPSS/H version and the reasons for a Java implementa-
tion of GPSS/H, JavaGPSS, are sketched. The introduc-
tion of JavaGPSS and the incorporation of distributed
simulation mechanisms based on HLA into this tool build
the main issue of the remainder of this paper. New appli-
cation areas are mentioned as an outlook on this new
dynamic technology.

1 DISTRIBUTED SIMULATION

In the past few years, the field of distributed simula-
tion, driven by the rapid expansion and acceptance of the
Internet and its multimedia front-end, the WWW, has
become one of the most promising and challenging tech-
nologies in modeling and simulation. The large number of
different approaches to distribute and interoperate simula-
tions (e.g. Aggregate Level Simulation Protocol ALSP,
Distributed Interactive Simulation DIS) has now lead to a
unifying approach, the High Level Architecture (HLA),
which has the challenging vision to support its predeces-
sors and different time regimes.

2 HIGH LEVEL ARCHITECTURE

The High Level Architecture is a simulation
interoperability standard currently being developed by the
US Department of Defense (DMSO 1997).

The architecture is defined by :

1. rules which govern the behavior of the overall dis-
tributed simulation (Federation) and their mem-
bers (Federates) (DoD 1996).

2. an interface specification, which prescribes the in-
terface between each federate and the Runtime In-
frastructure (RTI), which provides communication
and coordination services to the federates. Federa-
tion communication only takes place between each
federate and the RTI, not between federates them-
selves. The RTI as the central coordination soft-
ware component as well as the federates can be lo-
cated on any networked computer on an Intranet or
the Internet (DoD 1997).

3. an Object Model Template (OMT) which defines
the way how federations and federates have to be
documented (using the Federation Object Model,
FOM and the Simulation Object Model, SOM,
resp.). The OMT uses a tabular approach which is
well suited for automated tools and conversion into
the OMT data interchange format (OMT DIF).
OMTs promote the reuse of single federates or
federations as a whole. Federations can be viewed
as a contract between federates on how a common
federation execution is intended to be run (DoD
1997a).

The time management services provided by HLA allow
the transparent running of federates under different time
regimes (e.g. real time, time stepped, event driven)
(DMSO 1997a).

Even though it originates from military application sur-
rounding, the architecture seems to be very well suited for
civilian applications, too. Together with web-enabled
simulation and animation components, an exciting new
variety of applications and collaboration modes could be
developed (Picture 1).

RTI Interface

Other FederatesSimulation Federates Animation Federates

Runtime Infrastructure (RTI)

Picture 1 HLA-based Simulation and Animation

REQUIREMENTS

The requirements imposed on the simulation and ani-
mation tools by the HLA are considerable, which may be
one of the main reasons for the fact that most of the ex-
ample simulations released up to now were written in
C++. Therefore, a closer look at the connectivity between
classical simulation tools and the High Level Architecture
seems to be necessary.

Typical stand-alone applications like GPSS/H
(Schriber 1991) and SLX (Henriksen 1997) as simulation
tools and Proof Animation (Wolverine 1992) as animation
software only provide very limited means for simulation
execution co-ordination or communication. Additionally,
Proof Animation, as a post-run trace file animation tool,
lacks dynamic and/or real-time capabilities.

In order to participate in an HLA-based federation as a
full-featured federate, a tool should be able to co-operate
with the Runtime Infrastructure via a two-part interface
based on an ambassador metaphor (Picture 2). The RTI
ambassador is a software library to be linked to the tool or
model; it is included in the HLA distribution and contains
methods called by the federate. Vice versa, the federate
ambassador provides methods called by the RTI and has
to be developed and implemented as part of the modeling
process.

Federate

RTI Ambassador

Information
Flow

towards
Federate

Information
Flow

towards
RTI

Sim Ambassador

RTI Software

Picture 2 Federate/RTI Ambassadors (HLA Approach)

The necessity to either include or implement these am-
bassadors imposes some major problems on several clas-
sical simulation tools. If some of the requirements could
be relaxed depending on the application domain, a loose
coupling to the RTI (e.g. by gateways, see Picture 3)
would be feasible, too.

Federate

RTI Ambassador

Information
Flow

towards
Federate

Information
Flow

towards
RTI

Sim Ambassador

Gateway

RTI Software

via Pipes, Files, ...

Picture 3 Federate/RTI Gateway approach

The possibility to connect Proof and GPSS/H with the
RTI via Gateways (e.g. by the use of files, pipes and pro-
grams translating between RTI calls and appropriate file
entries that can be read by GPSS/H or Proof) is a solution
that does not use all the flexibility that the HLA concept
has to offer. Ways of coupling these standard software
tools to the RTI software in a more sophisticated manner
will be further investigated. A solution for SLX, which

uses a C-wrapper-library for translating between SLX and
the RTI, has been successfully implemented in a related
project.

3 TOOLS AND THEIR NEW VERSIONS

In order to provide the functionality needed and, at the
same time, promote the use of internet capabilities, simu-
lation and animation tools are developed based on Java.
One of these tools is Skopeo, an animation tool which
reads trace files in a format compatible with Proof Ani-
mation. It was developed at the University of Magdeburg
and runs within any Java-capable web browser (Ritter
1996; Lorenz and Ritter 1997; Dorwarth et. al. 1997). It is
currently being extended to accept real-time input and to
act as an HLA animation federate.

On the simulation side, a Java implementation of
GPSS, JavaGPSS, was developed at the ISG. It accepts
input in GPSS syntax which is then converted to Java
source code. Compiled to Java bytecode, the simulation
model could be run on any platform which a Java virtual
machine can be run on. Furthermore, the performance can
be improved considerably by on-site platform dependent
just-in-time (JIT) compilation. Here, too, JavaGPSS will
be extended to provide HLA functionality to the GPSS
programmer as described below.

4 PROTOTYPES

A prototype traffic simulation model was taken as an
example of how a model, built in a monolithic fashion,
could be transitioned into a set of interacting submodels
(Picture 4). This step-by-step process was documented
and serves as an example for lectures on distributed
simulation. The main aspect of this project was to exam-
ine different classical simulation tools for their suitability
for distributed simulation based on HLA. While some
tools have been assessed as well suited for this purpose
(e.g. SLX), other tools have shown general problems
(Proof, GPSS/H). Given these problems and the availabil-
ity of implementations of compatible tools in Java, it is
our intention to rather use these versions to integrate them
into HLA.

RTI Interface

Model of traffic
lightsModel of car traffic

Model of
pedestrian traffic

Traffic
Management

Systems

Other traffic light
models

Runtime Infrastructure (RTI)

Picture 4 Traffic Simulation Federation Example

The final step of our project (the HLA compliant ver-
sion of the traffic simulation) was started with the avail-
ability of the RTI software in late May 1997 using the
tools mentioned above. At the time of writing, a version
featuring 3 SLX models as federates has been completed.
The SLX models can be distributed on any PC in the
Internet running Windows 95 / NT (the current SLX ver-
sion only supports these operating systems). The SLX
simulator uses a wrapper library which not only translates
between SLX and RTI function calls, but also simplifies
the process of programming with the RTI. This is mainly
done by hiding the complicated use of object handles and
attribute handles / handle sets from the SLX programmer,
since this can be quite cumbersome to control and deal
with by a simulation specialist.

Given the topic of the conference, the remainder of this
paper will focus only on the Internet / Java related parts of
our project to bring HLA to classical simulation tools. The
same model as described above is being used as a refer-
ence example for the JavaGPSS project.

5 BRINGING HLA TO GPSS

The transition of GPSS to JavaGPSS is described in the
next two sections. Given the Java implementation, the
incorporation of HLA capabilities into JavaGPSS was
scheduled to have two stages:

1. Manual transformation of the standard JavaGPSS
output to make it HLA-compliant (Picture 5)

javaGPSS

Manual Additions

javac

Java Source Code

GPSS Code

Java Byte Code

HLA-enabled Java Source C.

Picture 5 First stage of HLA integration

2. Modification of the JavaGPSS-compiler to auto-
matically generate HLA-compliant Java source
code (with the use of additional information; see
Picture 6).

javaGPSS/HLA

javac

GPSS Code

Java Byte Code

HLA-enabled Java Source C.

SOM´s FOM

Picture 6 Second stage of HLA integration

Since the Java-API and the release of the Java package
to the RTI has been announced for late September 1997,
we are currently concentrating on stage 1. The rest of this
paper will focus on both the necessary enhancements that
need to be implemented in this stage and on our concept
for modifications of the actual JavaGPSS compiler.

5.1 Stand-alone GPSS/H

GPSS/H is a fast, stand-alone, discrete event simulation
tool with a long tradition and is available on a variety of
platforms (UNIX, OS/2, MS-DOS, etc.) (Schriber 1991).
In GPSS/H, the dynamic elements (called transactions)
are routed through blocks which describe static objects
(e.g. logic switches, storages, facilities). Besides its sim-
ple file manipulation functionality, the coordination with
external programs or simulations is quite limited. It is
possible to include external functions and to call external
programs; this does not allow the inclusion of the RTI
library, though (Klein and Strassburger 1997).

5.2 JavaGPSS

The JavaGPSS compiler is a simulation tool which was
designed for the Internet. The objective was to create a
GPSS implementation which could truly be run as an
applet in any Internet browser. Previous solutions devel-
oped at the University of Magdeburg had to use CGI
scripts to transfer GPSS source code entered in an HTML
form to a server. This server would than run the simula-
tion with a commercial GPSS/H implementation and
deliver the results back to the client. With the existence of
JavaGPSS an interesting alternative has been developed.
The JavaGPSS compiler is a Java program that translates
GPSS source files to Java source code (Picture 7).

javaGPSS

javac

JIT compiler

Java Source Code (.java File)

GPSS Source Code

Executable Program

Java Byte Code (.class File)

Picture 7 Code generation with JavaGPSS

Since Java applets cannot write files, the current version
of JavaGPSS itself cannot be run as an applet. The output
of JavaGPSS (the actual simulation) can be run in any
Java-capable Internet browser, though.

The syntax of JavaGPSS is compatible with GPSS/H up
to a very high percentage. There are only little modifica-
tions regarding obsolete block and control statements.

Future versions of JavaGPSS may consider the possibility
of running the actual JavaGPSS compiler as an applet,
possibly by rather interpreting the GPSS source code than
generating new Java code.

5.3 HLA-enabled JavaGPSS

Our goal was to draft and implement a cross-compiler
that transforms GPSS source code to HLA compliant Java
source code. We intended to have as few modifications to
the GPSS syntax as possible. This is done for the ease of
the end-user and simulation developer, who has to be
provided with an easy-to-use simulation language (as
GPSS) and the possibility to "do" distributed simulation
with a minimum of necessary knowledge of HLA, but
without having to care about details in terms of synchro-
nization, data exchange, federate ambassador, etc. One,
though, has to care about some components that are re-
quired by HLA. One of these components, and thereby an
integral part of simulation models participating in an HLA
federation, is the Simulation Object Model (SOM) in
conjunction with the Federation Object Model (FOM),
which both document the Object Model in a way defined
by the HLA OMT.

We were planning to use the existing JavaGPSS and
enhance it in order to deliver HLA-compliant Java source
code. To achieve this, the compiler was to use additional
information specified in the object models mentioned
above.

6 KEY ISSUES OF THE HLA-ENABLED
JAVAGPSS

Generally speaking, there are two major areas to con-
sider for the concept of the Java-GPSS cross-compiler to
produce HLA-compliant output, which are the time man-
agement and the object and data distribution management.

The time management aspect concerns itself with the
necessity of distributed simulations to coordinate the
simulation clocks of the participating simulations. Our
approach is going to use a conservative synchronization
protocol with lookaheads.

The object and data distribution management has to
establish rules for the representation of external data in-
side federates („ghosting“). It also has to organize pub-
lishing and subscribing to object classes and object attrib-
utes. Furthermore, the aspect of how to deal with interac-
tions, a construct that does not exist in GPSS, has to be
considered.

6.1 RTI Initialization

Additional code for the initialization of the RTI (create
RTI ambassador) and for the implementation of the feder-
ate ambassador has to be added. This part has to also
cover the setting of the initial time management parame-
ters (time regulation, time constrained) and the publishing
and subscribing of the object and attribute classes to be
modeled. In order to have as few additions to the GPSS
code as possible, it is necessary to derive the information
about which object classes to publish and which to sub-
scribe for each federate from the Simulation Object Model
(SOM).

However, at this point in time, this information does
not need to be documented to have a running HLA fed-
eration (although it must be specified in order to say that
the federation is HLA compliant). The only thing needed
for a running HLA federation is an .FED file specifying
the federation execution data which represents, as a matter
of fact, only the information in the Federation Object
Model (FOM) and some information about transportation
mechanisms.

To have subscription and publication services auto-
mated, we currently need an additional data source which
will be implemented using a file. It is intended to use the
DIF format which is the standard format for documenting
the several object models required by HLA.

6.2 Time Management

There is a central point in the Java source code pro-
duced by the JavaGPSS compiler where the advancement
of the simulator clock is performed. This routine is being
enhanced to use the „NextEventRequest“- method of the
RTI ambassador.

At the time being only a conservative time manage-
ment protocol with lookahead is allowed. For a classical
discrete event simulation language like GPSS a method
for circumventing the necessity to specify a lookahead
value strictly larger than zero would be desirable. How-
ever, this would require changes in the HLA con-
cept/interface specification. (Fujimoto 1997). Further
versions of the HLA specification may take these addi-
tions into account.

6.3 Data and Object Management

Objects that can be published and subscribed to in our
first version will include a subset of the standard GPSS
blocks (storage, facility, logic switch, amper variables).
Transactions and certain other GPSS entities will be con-
sidered in a future version.

The registration of “HLA”-objects (the objects relevant
to the federation execution and listed in the SOM) with

the RTI will be performed when instances of their
JavaGPSS-counterparts are created (e.g. when the first
definition/use of a logic switch occurs, it will be regis-
tered with the RTI). Any subsequent modifications of the
object will be announced using the “UpdateAttrib-
uteValue” service of the RTI.

Once a certain object is registered with the RTI, and
the first attribute update has been sent, any federate inter-
ested in objects of this class will receive a “Discover
Object” notification. The receiving federate is going to
create a local instance (“ghost”) of this object (which will
be a standard GPSS object) and store any subsequent
attribute updates for this object instance in this object.
Again, additional code has to be added to implement this
concept.

For interactions and interaction classes, a construction
which does not exist in GPSS, two different approaches
are being considered. Taking into account that (at least for
our reference examples) interactions are mainly used for
telling remote objects to change an attribute value, the
first and more simple approach is to have the JavaGPSS
compiler generate an interaction when a federate tries to
change an attribute value of an object it does not own (e.g.
an object that it has subscribed to). The interaction is
directed towards the owner object and contains the
changed attribute value as a parameter. Although this does
not use the whole flexibility of the interaction concept, it
is very well suited for standard discrete event simulation
purposes.

The second approach, which again will be considered
by a future version, will offer all the flexibility of interac-
tions. This advantage is coupled with the necessity to
enhance the GPSS syntax, though.

7 CONCLUSION AND OUTLOOK

The main advantage of the introduced concept is that it
brings classical simulation tools to HLA, whereas up to
this point in time, most of the example simulations re-
leased by the U.S. DoD are written in C++, which may
not be the most comfortable simulation tool for a simula-
tion specialist.

Another advantage is that with the use of Java, the in-
tegration of simulation (in particular, distributed simula-
tion) into the web can be lifted onto a new stage. How-
ever, the demonstrated approach can only be seen as one
step towards a Web-Based Simulation Environment.

The approach outlined in this paper has been developed
based on the provisional Java-API to the HLA RTI. Since
this API and the necessary binaries to actually "code" a
simulation are not officially released by the DMSO yet, it
is at this point in time not possible to say when the actual
implementation of this concept will be finished.

Further steps might include the consideration of
CORBA as a possibility to bring a broader range of

simulations and architectures to the Web (OMG 1997).
This approach could use the strong correlation of Java and
CORBA to produce synergy effects.

Application areas in urban traffic and emergency man-
agement (Williams 1996; Burmester 1996) will be ad-
dressed by forthcoming prototypes developed with web-
enabled HLA compatible tools.

REFERENCES

Burmester, J. 1996. Plowshare Project. Available from
http://www.stricom.army.mil/PRODUCTS/PLOWSHAR
ES/.

Defense Modeling and Simulation Office (DMSO).
1997. The High Level Architecture Homepage. URL
http://www.dmso.mil/projects/hla/.

Defense Modeling and Simulation Office (DMSO).
1997a. HLA Time Management Design Document, Ver-
sion 1.0, dated 15 August 1996. Available online at the
HLA Homepage (DMSO 1997).

Department of Defense (US). 1996. High Level Archi-
tecture Rules, Version 1.0, dated 15 August 1996. Avail-
able online at the HLA Homepage.

Department of Defense (US). 1997. High Level Archi-
tecture Interface Specification, Version 1.2 Draft 6, dated
1 August 1997. Available online at the HLA Homepage.

Department of Defense (US). 1997a. High Level Ar-
chitecture Object Model Template, Version 1.1, dated 12
March 1997. Available online at the HLA Homepage.

Dorwarth, H.; P. Lorenz; K. C. Ritter; T. J. Schriber.
1997. Towards a Simulation and Animation Environment
for the Web. Winter Simulation Conference WSC 1997.
In preparation.

Fujimoto, R. M. 1997. Zero Lookahead and Repeat-
ability in the High Level Architecture. Proceedings of the
Spring 1997 Simulation Interoperability Workshop,
March 3-7, Orlando. Paper No. SIW97S-046, available
online at http://www.dmso.mil/projects/hla/papers/.

Henriksen, J. O. 1997. SLX and Proof Animation: Im-
proved Integration of Simulation and Animation. In Deus-
sen, O. and P. Lorenz (Ed.), Proceedings of the Simula-
tion und Animation Conference Magdeburg, March 6.-7.,
1997. SCS European Publishing House San Diego / Er-
langen / Ghent / Budapest 1997, pp. 287-294.

Klein, U. and S. Straßburger. 1997. Die High Level
Architecture (HLA): Anforderungen an interoperable und
wiederverwendbare Simulationen am Beispiel von
Verkehrs- und Infrastruktursimulationen (The High Level
Architecture: Requirements of interoperable and reusable
simulations by example of traffic and infrastructure
simulations). Proceedings of the 11th Simulation Sympo-
sium ASIM 97 (Nov. 11-14), Dortmund, Germany. In
preparation.

Lorenz, P. and K. C. Ritter. 1997. Skopeo: Platform-
Independent System Animation for the W3. In Deussen,
O. and P. Lorenz (Ed.), Proceedings of the Simulation und
Animation Conference Magdeburg, March 6-7, 1997. SCS
European Publishing House San Diego / Erlangen / Ghent
/ Budapest 1997, pp. 12-23.

Object Management Group (OMG). 1997. Common
Object Request Broker Architecture (CORBA) Home-
page. URL http://www.omg.org.

Ritter, K. C. 1996. The Skopeo Animation System.
Available online at http://simos2.cs.uni-
magdeburg.de/Skopeo/Ani.html.

Williams, R. J. 1996. An Emergency Management
Demonstrator Using The High Level Architecture. Pro-
ceedings of the European Simulation Symposium EES
1996. The Society for Computer Simulation International,
October, 24-26 1996. Genoa, Italy.

Wolverine Software Corporation. 1992. Using Proof
Animation.Wolverine Software Corporation.

Schriber, T. J. 1991. An Introduction to Simulation
Using GPSS/H. John Wiley & Sons, New York.

AUTHOR BIOGRAPHIES

ULRICH KLEIN is a PhD candidate at the University
of Magdeburg, Germany. He holds a Master’s degree in
Industrial Engineering from the University of Karlsruhe
and has been involved in Emergency Management since
1992. He has two years of experience as Project Manager
for Command, Control, and Communication Systems for
Public Safety and Security in Europe. His research topics
include Emergency Management, Urban Infrastructure
Management and Logistics, Geographic Information Sys-
tems, and the High Level Architecture.

STEFFEN STRASSBURGER is a Master’s student at
the Department of Simulation and Graphics, Faculty of
Computer Science, Otto-von-Guericke University, Mag-
deburg. His experience with inter-networking and simula-
tion includes a one-year-stay at the University of Wiscon-
sin, Stevens Point. His main research interest lies in dis-
tributed simulation and the High Level Architecture.

JÜRGEN BEIKIRCH is a Masters student at the De-
partment of Simulation and Graphics, Faculty of Com-
puter Science, Otto-von-Guericke University, Magdeburg.

