
HLA-FEDERATE REPRODUCTION PROCEDURES IN PUBLIC TRANSPORTATION FEDERATIONS

Thomas Schulze
Steffen Straßburger

Otto-von-Guericke University of Magdeburg
School of Computer Science

PSF 4120
39102 Magdeburg, Germany

e-mail:{tom, strassbu}@isg.cs.uni-magdeburg.de

Ulrich Klein
Fraunhofer Institute for

Factory Operation and Automation IFF
Factory Ecology Department

Sandtorstrasse 22
39106 Magdeburg, Germany

e-mail: Uklein@iff.fhg.de

KEYWORDS

Transportation, Discrete simulation, Distributed simulation

ABSTRACT

This paper summarizes our conceptual and prototypical
work related to the dynamic composition of heterogeneous
distributed simulations using the High Level Architecture
for Modeling and Simulation (HLA). Previous studies of the
authors and within the HLA community have shown that
federates other than of simulation type are feasible. The
reproduction of federates during runtime (so-called
"cloning") has been identified as basic dynamic pattern,
allowing the creation or exchange of federates of the same
or different type. The paper provides an overview of
different cloning strategies within or external to a given
federation and applies them to the public transportation
domain. Finally, the potential of cloning strategies on the
component (HLA: federate) level is described.

1 MOTIVATION

With the advent of the High Level Architecture it became
feasible for the first time to build simulations and simulation
based information systems (federations) in a distributed
manner using heterogeneous simulations and other software
or hardware components (the federates). In view of the HLA
support for interoperability and reusability, federates can be
(re-)combined to form simulations / information systems.
As long as software adheres to the HLA specifications (e.g.,
strictly using the object model templates and the HLA RTI
interface), it can act as a federate. Previous studies by the
authors and the HLA community have shown that federates
can also consist of online information systems, databases,
etc. Different federates with identical object models can be
used to offer the same objects in a real operational system or
in training mode (e.g., one time using an online GPS-based
fleet management system and a simulation in training

mode). This flexibility is a major breakthrough in simulation
based system design but in most cases has been limited to
the pre-run-time. Once a set of federates is used for starting
a federation execution, it remains the same (late entering
federates are allowed, though).

The cloning approach presented in this paper tries to
extend the flexibility of system composition to run-time.
Federates can be created as copies of existing federates, and
while the status and the external representation (in HLA the
object model) remains the same, a different internal
implementation can be used. This approach is not limited to
one time management, rather it includes the parallel
management of different time axes in order to allow e.g. ad-
hoc forecast functionality. In this way a method for
simulation model initialization is also derived, preventing
the overhead incurred by starting at an empty-and-idle
status.

2 CLONING TECHNOLOGIES IN SIMULATION
ENVIRONMENTS

2.1 Related Work

The term “Cloning” in relation with distributed simulation
was first introduced in literature in 1997 by (Hybinette and
Fujimoto 1997, 1998). In their approach logical processes
(LPs) of a parallel simulation are cloned, i.e., copies of
logical processes of a parallel simulation are created during
the execution of the simulation. The copies (clones) of the
original logical processes would initially have the same state
as the original processes, but possibly behave differently at
a later point in time because of some user interaction. The
intention of this is to conduct multiple what-if-analysis at
the same time, e.g., by having multiple clones each
evaluating the consequences of different strategies at the
same time.

The main motivation for the approach taken by
Hybinette/Fujimoto is to have as few as possible copies of
logical processes running at the same time due to
performance and resource issues. This is done by
association of several "virtual" LPs to one "physical" LP
until a virtual LP behaves differently and needs to be
created physically.

Kindler (Kindler 1999) and Novack (Novack 2000)
developed together the nested-simulation or reflective-
simulation approach. The goal of this approach is to start a
new simulation inside an existing simulation. The internal
simulation delivers information that will be used by the
original simulation. It is necessary to copy the state of parts
or the whole original simulation model for starting the
internal simulation. This approach has been developed for
monolithical simulation models only.

2.2 Cloning in HLA-Federations

Since the idea of cloning simulations for the reasons of
conducting multiple what-if-analysis and providing as-fast-
as-possible forecasts could also be very useful and valuable
in the context of HLA federations, concepts and prototypical
solutions for developing a similar technique for HLA
federations have been investigated. Different cloning
technologies for HLA federations have been developed at
the University of Magdeburg. The following techniques are
suggested:

Internal Cloning: Internal cloning refers to the process
of making a copy of one or more HLA federates and have
them join the same federation as the original federates
(Figure 1). The federates must take appropriate steps for
distinguishing between messages (i.e., updates, interactions,
and the like) between original federates and cloned
federates. Possible solutions would incorporate special
attribute and parameter tags for each update or interaction
which is issued. The simpler case would be to clone
federates which have only a passive behavior. How this
approach could be used is described below in the discussion
of the streetcar federation prototype, which serves as the
demonstration federation for the cloning techniques
described here.

External Cloning: External cloning refers to the process
of making a copy of one or more HLA federates and have
them join a different federation than the original one (Figure
2). The major advantage of an external cloning procedure is
that it allows the cloned federates to apply a different time
management scheme, e.g., they could switch from a real-
time simulation to an as-fast-as-possible forecast. This is
also an approach providing more flexibility compared to the
original cloning technique from Hybinette and Fujimoto,
where all LPs were executed in one simulation requiring all
simulations to run on the same time axis.

t t+1 t+n

Original

A‘

C

B

A

Create A‘:
•Start process
•Join Federation

Initialize A‘ with A:
•Copy all objects:
–Passively: wait for update
–Actively: request updates
•Obtain additional state

information

C

B

A

A‘

C

B

A

A‘

C

B

A

Choose an alternate strategy,
begin Simulation
Problem:
•Distinguish between
original objects and copies,

•Outgoing messages from
copy and clone can confuse
other federate

t t+1 t+n

Original

A‘

C

B

A

Create A‘:
•Start process
•Join Federation

Initialize A‘ with A:
•Copy all objects:
–Passively: wait for update
–Actively: request updates
•Obtain additional state

information

C

B

A

A‘

C

B

A

A‘

C

B

A

Choose an alternate strategy,
begin Simulation
Problem:
•Distinguish between
original objects and copies,

•Outgoing messages from
copy and clone can confuse
other federate

Figure 1:Suggested Procedure for Internal Cloning

External cloning also eliminates the need to distinguish
between message traffic between original and cloned
federates, which is an important issue in the case of internal
cloning.

Time
t t+1 t+n

Original

A‘

C

B

A

Create A‘:
•Start process
•(Join Federation)

Initialize A‘ with A:
•Copy all objects:
–Passively: wait for update
–Actively: request updates
•Obtain additional state

information

C

B

A

A‘

C

B

A

Termination:
•Evaluation of results,

possibly: consideration
in original federation

•Federates resign
•Terminate federation

C

B

A

Create 2. Federation:
•Create Federation
•A‘ joins
•(A‘ resigns in original fed.)
•If applicable: clone and
join additional federates

Copy

A‘

B‘?

A‘

B‘?

t+1
t+x

X

Possibly: permanent
transmission of state
into original federation

Time
t t+1 t+n

Original

A‘

C

B

A

Create A‘:
•Start process
•(Join Federation)

Initialize A‘ with A:
•Copy all objects:
–Passively: wait for update
–Actively: request updates
•Obtain additional state

information

C

B

A

A‘

C

B

A

Termination:
•Evaluation of results,

possibly: consideration
in original federation

•Federates resign
•Terminate federation

C

B

A

Create 2. Federation:
•Create Federation
•A‘ joins
•(A‘ resigns in original fed.)
•If applicable: clone and
join additional federates

Copy

A‘

B‘?

A‘

B‘?

t+1
t+x

X

Possibly: permanent
transmission of state
into original federation

Figure 2: Suggested Procedure for External Cloning

Exchange of Federates at Runtime: Since exchanging
federates with the same simulation object model (SOM) at
runtime of a federation is a process which is (up to a certain
extend) related to the issue of cloning of federates it will
also be discussed here. The suggested procedure for
exchanging federates at runtime includes the following steps
(Figure 3):

• Create a copy (clone) or start a replacement
federate

• Join this federate to the federation
• Acquire objects from original federate
• Resign the original federate

Time
t t+1 t+n

Original

A‘

C

B

A

Create A‘:
•Start process
•Join Federation

Initialize A‘ with A:
•Copy all objects:
–Passively: wait for update
–Actively: request updates
•Obtain additional state

information

C

B

A

A‘

C

B

A

Removal of A:
•Resign Federate

A‘

C

B

A

Acquisition of Functionality

Object Classes:
•Ownership transfer
Interactions:
•Immediate (implicit)
transfer

Time
t t+1 t+n

Original

A‘

C

B

A

Create A‘:
•Start process
•Join Federation

Initialize A‘ with A:
•Copy all objects:
–Passively: wait for update
–Actively: request updates
•Obtain additional state

information

C

B

A

A‘

C

B

A

Removal of A:
•Resign Federate

A‘

C

B

A

Acquisition of Functionality

Object Classes:
•Ownership transfer
Interactions:
•Immediate (implicit)
transfer

Figure 3: Suggested Procedure for Exchanging Federates at
Runtime

2.3 Implementation Issues

In the cloning approach by Hybinette/Fujimoto the
communication infrastructure (the Georgia Tech Time Warp
Operating System, GTW) had to be enhanced for realizing
the cloning. For the cloning of HLA federates, this cannot
easily be done. Therefore different alternatives have been
investigated.

A major prerequisite for the cloning of HLA federates
is a technique for saving and restoring the state of a running
simulation model. In the ideal case a simulation system
would offer a built-in function for doing this itself.
Examples for such simulators are GPSS/H and Simplex.
GPSS/H offers the checkpoint function which saves a
memory footprint to the hard disk and thus allows a later
restoration of the model state. Simplex allows the user to
schedule breaks for a certain simulation run. When reaching
a break, the entire model state is also written to hard disk
and can be resumed later.

Most commercial simulation systems do not offer a
functionality for saving and restoring the state of a running
simulation model. Therefore alternative means for copying
the state of a simulation model have been investigated. The
simulation system which served as the reference system for
these investigations was SLX. The most important reason
for this choice was the availability of a reliable HLA
interface for this tool (Straßburger et al. 1998) and the
possibility to easily be able to implement modifications or
enhancements, in case they should deem necessary.

The difficulty when implementing the cloning or
replication process for a simulation model is to cover all
relevant model elements. Besides replicating the obvious
items, e.g., object instances registered with a federation,
other items need to be included, too. This relates for

instance to certain simulator internals, like the state of
random number generators, state of statistics already
collected, etc.

Another question relates to the fact of how the state
information from the original HLA federate to the replicated
federates is transmitted. One could use external means, e.g.,
files, pipes, or a network connection. On the other hand one
could also use means provided by HLA and its RTI itself.
This is the path we chose for our prototypical
implementation. The approach used here has some
similarities to the object transfer approaches discussed in
(Myjak et al. 1999a) and (Myjak et al. 1999b).

In our approach the original federate starts the cloned
federate upon the occurrence of a certain event, e.g., by
receiving an certain interaction, or command via the HLA
Management Object Model (MOM). The clone is based on
the same SLX source code like the original federate. After
startup the clone detects the fact that it is indeed a clone and
undergoes a special initialization phase. In this phase the
clone requests updates for all object instances the original
federate has registered in the federation. Also, additional
information regarding the internal status of the original
federate is transmitted. The clone is thus enabled to build up
an almost identical copy of the internal state of the original
federate. Some limitations apply regarding statistics and
other details. More information can be obtained from
(Albrecht 2000).

After the state of the original federate is replicated in
the clone, the clone can enter its normal execution cycle.
The further process depends on the aims for the cloning
process. In an internal cloning procedure, the clone would
co-exist with the original federate. This is most trivial in the
case that the clone is passive and does not send messages
(updates/interactions) to other clones. If this is not the case,
further efforts need to be taken to distinguish between
messages from the clone and the original.

An alternative aim could be to perform a forecast
simulation. In this case, the clone could resign from the
original federation and create/join a new one (possible in
conjunction with other clones).

The third alternative would be a replacement of the
original federate. In this case the clone would additionally
request the transfer of ownership of object instances from
the original federate. Then the original would resign and the
clone would take over the responsibility for modeling the
acquired object instances.

3 CLONING IN PUBLIC TRANSPORT
FEDERATIONS

The HLA-related cloning is a new technology enabling a
broad range of new and flexible applications. We are

convinced that cloning technology will promote the use of
simulation in traditional and new application areas. On a
more general level application-oriented simulation models
can be divided into three categories: design of systems,
management of systems, and staff training applications. This
paper presents three cloning technology examples from the
second and third general application areas described above.
The examples are focusing on public transport federations.
Public transport has been selected because most people have
related background and their own experiences. Furthermore,
public transportation prototypes already have served as
demonstrations for other advanced HLA-based work, such
as online-/realtime-federates.

3.1 Support for operative management - forecast

An increasing number of simulation models is used in the
operative management of public transportation systems.
These models help for example managers to evaluate the
system capacity for new transportation tasks, for
breakdown- or accident-related changes in the number of
available vehicles and for changes in the availability of
staff. They give support to the management of systems for
analysis of throughput and detection of bottlenecks. The
management wants to evaluate operating decisions in
relation to the performance of the system. In general the aim
of models of this category is to support the operative
management. The management wants to gain experiences
from the future. We call these dedicated models
Management Simulation Models (MSM).

MSM require greater level of detail than models for
transportation system design. For example, complex control
mechanisms and strategies may have to be implemented. On
the other side, the MSM must be initialized with the state of
the real system. For this task two possibilities exist: The
simulation can start from a null-and-idle-status and run until
it reaches the current state of the real system (e.g., using a
trace file), or the model can be initialized directly with the
state of the real system.

We prefer the last possibility using the external cloning
procedure. The basic idea is to use one current-state-
federation as a mirror of the current real system state. A
real-time simulation model (federate) exists inside this
federation and this federate will be updated permanently by
online-data. The time advancement in the simulation
federate will be paced by the real-time. This way it can be
ensured that the simulation model maps the current system
state. When the management wants to get decision support,
the simulation federate will be cloned and it will be placed
in a new federation.

The new federation has to contain the cloned federate
and optionally other federates for human-interactions and
visualization. This simulation federate operates as fast as

possible and has to return a forecast considering the new
conditions. The advantage of this solution is that the
simulation model is indeed initialized by the current state of
the real system.

Figure 4: Suggested Procedure for External Cloning

3.2 Support for operative management – different
strategies

Operative management is often confronted with the issue of
choosing between different decision alternatives.
Simulations can help to support the process of choosing the
best suited decision. This can either be done by providing
as-fast-as-possible forecasts, as discussed in the previous
section, or by evaluating many different alternatives at the
same time.

For the latter approach we suggest the internal cloning
procedure: Several copies (clones) of a simulation model are
created within the same federation. Each clone evaluates a
different strategy. One implication of running within the
same federation is that usually the same time management
needs to be applied. This is also the approach which was
chosen by Hybinette and Fujimoto.

In case of real-time proportional federations, this
approach is therefore best suited for situations, where no
immediate decision at a fixed time needs to be performed. In
situations where an immediate decision is necessary, many
as-fast-as-possible forecasts (faster than real-time) for all
different strategies are needed.

Running multiple simulation copies within the same
federation has the advantage that each copy can use any
other information provided from other federates. This is
especially important in the case of on-line transportation
simulations using some sort of real-life data source. In this
case each simulation copy can use this on-line data and
perform its strategy evaluation based on this data.

The evaluation of different strategies based on this
approach can be useful for strategic planning of traffic
schedules, e.g., by comparing how different routing
alternatives would influence the throughput of the system.
The optimization of riding times, avoidance of traffic
delays, and the minimization of necessary transportation
devices can be additional target dimensions.

3.3 Support for staff training

Training is one of the most important application areas of
simulation technology in the military and civil domain. This
is due to the rareness of the events to be trained, costs or
danger incurred by real training or the non-existence of the
appliances or systems to be used or trained.

The training of staff can be executed in a pure training
environment or in combined training and real life
environments.

In the fist case the trainee operates in a traditional
closed pure training environment. The trainee is integrated
as an human player in the federation. He has to react on
actions that will be delivered by a data supplier federate.
The federation is completed by any other passive
information and visualization federates. A training session
can start with a data supplier federate focused on simple
tasks. The trainee can thus be limbered up. After the warm-
up period this supplier federate will be exchanged by an
other. This new federate can deliver the real data online
from the underlying transportation system. The trainee does
not perceive that he has to respond to the real conditions.
The trainer observes the reactions of the trainee and he/she
can exchange the data supplier federate again. The exchange
of federates during runtime will be applied.

Figure 5: Suggested Procedure for Federate Exchange

In the second case the trainee acts in an open or
integrated training environment. He is integrated in the real
control and command structure but his reactions will not

influence the real process. The control and command
federation consists of the active human dispatcher federate,
the online data supplier federate and other necessary
federates for visualization and data bases. When the trainee
will be integrated the dispatcher federate will be cloned and
this federate will be the trainee-federate in the federation.
The trainee does not work in an artificial training
environment. He is integrated in the real system, using it in
an "personal" training mode. The internal cloning will be
used for this application.

Figure 6: Suggested Procedure for Internal Cloning

4 PROTOTYPE

The prototype for test and demonstration of the cloning
approaches has been a federation modeling the streetcar
system of the city of Magdeburg (Schulze et al: 1999).

4.1 Internal Cloning

In this target scenario the simulation federate of the
federation is cloned. The clone joins the original federation
and requests information about all registered objects from
the original federate, i.e., all streetcars currently moving
through the city. After receiving updates for all objects the
clone starts simulating the streetcar traffic based on the
current schedule or any other chosen routing strategy. In
opposite to the original federate the online positions for the
vehicles will no be regarded. The cloned federate simulates
the public traffic system without the real perturbations.
Since the clone has a passive behavior, i.e., it does not send
updates to other federates except the visualization
component, no special mechanisms for distinguishing
between original and cloned objects need to be introduced.
The visualization federate can show both object types and
thus visualize the different routing strategies chosen for the
streetcars.

4.2 External Cloning

In this target scenario the simulation federate is cloned,
too. It also requests information about all registered objects
from the original federate. After that it resigns from the
original federation. The clone is then used to perform an as-
fast-as-possible forecast of the streetcar traffic. This enables
the user to obtain an impression how a certain situation will
develop and if bottlenecks will be likely to occur. For this
forecast the cloned federate needs to advance simulation
time faster than real-time. Therefore it can

• run independently from other federates without
joining a new federation

• join a new federation and cooperate with other
(cloned) federates, e.g., the visualization
component.

4.3 Exchange of federates at runtime

In this scenario the on-line data source of our federation is
exchanged by an off-line data source. This replacement is a
straight-forward process: The off-line federate is started. It
retrieves all necessary state-information from the on-line,
e.g., the current simulation time, time stamp of the last
update/interaction sent. Then the on-line federate resigns
and the off-line federate starts sending position updates.
This procedure is useful for operator training. By switching
from a real system to a simulated scenario (without the need
for the operator to know if the scenario is real) reactions to
certain situations can be tested and trained.

5 CONCLUSION

The paper derived the cloning process on the component
(HLA: federate) level as basic pattern of dynamic system
composition applications, e.g., dynamic system
reconfiguration, ad-hoc forecast analysis, and training
applications.

The distinction between external description (in HLA
the object models) and internal implementation details
allows the creation or exchange of federates with the same
external description and the same or different internal
"nature" (e.g., simulation, online process, database or
human-in-the-loop). This approach also covers the use of
different time axis in order to allow, e.g., as-fast-as-possible
forecasts during a real-time main application.

The public transportation domain has been chosen as
application area for the prototypical work of the authors.
Future steps include real-life prototypical applications of the
different cloning strategies and the development of cloning
and dynamic system management tools. The potential of
cloning and other dynamic patterns is considered enormous,
requiring considerable research and tool support.

ACKNOWLEDGEMENTS

This work has been supported by the Magdeburger
Verkehrsbetriebe GmbH (MVB) by provision of their
public transportation schedule and online positioning
system. The geographic baseline data used in the
visualization federate of the public transportation prototype
has been provided by the Landesamt für Datenverarbeitung
und Vermessung, Saxony-Anhalt, Germany.

REFERENCES

Albrecht, G. 2000. Konzeption und Implementierung von
Cloning-Techniken in HLA Federations. Master’s Thesis.
Institute for Simulation and Graphics. Otto-von-Guericke
University Magdeburg. July 2000 (In Progress).

Hybinette, M., and R. Fujimoto, 1997. Cloning: A Novel
Method for Interactive Parallel Simulation. In
Proceedings of the 1997 Winter Simulation Conference,
pp. 444-451. ed. S. Andradóttir, K.J. Healy, D.H.
Withers, and B.L. Nelson.

Hybinette, M., and R. Fujimoto, 1998. Dynamic Virtual
Logical Processes. Workshop on Parallel and Distributed
Simulation (PADS’98), May 1998.

Kindler, E., 1999. Nested simulation of container yards. In
Proceedings of the Simulatiuon und Visualisierung ’99
Magdeburg, ed. O. Deussen, P. Lorenz und V. Hinz, 247-
259. SCS-Europe BVB, Ghent, Belgium 1999.

Novack, P., 2000. Reflective simulation with Simula and
Java. In Proceedings of the Simulatiuon und
Visualisierung 2000 Magdeburg, ed. T. Schulze, P.
Lorenz und V. Hinz, 183-196. SCS-Europe BVB, Ghent,
Belgium 2000.

Myjak M., S. Sharp, T. Lake, K. Briggs, 1999a. Object
Transfer In HLA. In: Proceedings of the Simulation
Interoperability Workshop, Spring 1999.

Myjak M., S. Sharp, W. Shu, J. Riehl, D. Berkley, P.
Nguyen, S. Camplin, M. Roche, 1999b. Implementing
Object Transfer In the HLA. . In: Proceedings of the
Simulation Interoperability Workshop, Spring 1999.

Straßburger, S., T. Schulze, U. Klein, J.O. Henriksen. 1998.
Internet-based Simulation using off-the-shelf Simulation
Tools and HLA. In Proceedings of the 1998 Winter
Simulation Conference, eds. Medeiros, D.J. and E.
Watson, Washington D.C.

Schulze, T., S. Straßburger, U. Klein, 1999. On-Line Data
Processing in Simulation Models: New Approaches and
Possibilities Through HLA. In Proceedings of the 1999
Winter Simulation Conference, pp. 1602-1609. December
5-8, 1999. Phoenix.

