
ON THE HLA-BASED COUPLING OF SIMULATION TOOLS

Steffen Straßburger
Institute for Simulation and Graphics

Department of Computer Science
Otto-von-Guericke University

Universitätsplatz 2
D-39106 Magdeburg

email: strassbu@isg.cs.uni-magdeburg.de

ABSTRACT

The recent development of the High Level
Architecture for Modeling and Simulation (HLA) has
stimulated interest in the use of distributed,
interoperable simulation models. This paper deals with
the application of HLA-based coupling of simulation
tools. Concepts for the extension of simulation tools
with HLA capabilities are outlined and their realization
is discussed. Some prototypic federations of commercial
simulations tools are discussed.

KEYWORDS

Discrete Event Simulation, Distributed Simulation,
High Level Architecture (HLA), AutoMod, Pro Model,
Simplex 3, SLX.

INTRODUCTION

The recent advent of the High Level Architecture for
Modeling and Simulation (HLA) has greatly increased
interest in the use of distributed, interoperable
simulation model components. To date, most models
using HLA have been developed in conventional high-
level languages (primarily C++). This paper discusses
concepts by which HLA can be used to interconnect
models developed using commercially available, off-the-
shelf simulation software. General approaches for
adapting such software for use with HLA are presented.
Two generalized solutions for the simulators SLX and
SIMPLEX 3 are discussed, as well as problems with
developing solutions for other tools like Pro Model and
Automod.

The High Level Architecture is defined by:

1. rules which govern the behavior of the overall
distributed simulation (Federation) and its
members (Federates).

2. an interface specification, which defines the
interface between each federate and the Runtime

Infrastructure (RTI), a supporting software
component that is responsible for providing
communication and coordination services to the
federates.

3. an Object Model Template (OMT) which defines
how federations and federates have to be
documented.

Although HLA seems to have some similarities with
CORBA, HLA offers more than CORBA can do for
simulations tools. HLA has integrated mechanisms for
the synchronization of simulation tools regarding time
and data exchange as well as intelligent data distribution
mechanisms.

HLA INTERFACE OF SIMULATION
TOOLS

HLA defines a two-part interface which federates are
required to use for communicating with the Runtime
Infrastructure (RTI) (DMSO 1998). This interface is
based on the ambassador paradigm. A federate
communicates with the RTI using its RTI ambassador.
Conversely, the RTI communicates with a federate via
the federate’s ambassador. From the federate
programmer’s point of view these ambassadors are
objects and the communication between the participants
is performed by calling methods of these objects.

HLA Integration Concepts

In order to enable simulation tools to access the HLA
Application Programming Interface (API) it is inevitable
to perform low level programming in a typical
programming language like C++, Java, or ADA. It is
highly desirable for simulation developers to only have
to perform this task once for a variety of models.
Therefore simulation model independent solutions are
needed. This kind of approach can be classified as a
“tool enhancement approach”. Ideally this task would be
performed by the tool developers themselves. Since only
very few simulation tool developers actually see the
necessity to build an HLA interface into their tools,
model developers quite often are confronted with

building it on their own.

Most often the restrictions of time and money dictate
rather “quick and dirty” solutions, which only provide a
limited set of HLA functionality to the simulation tool.
Often some model specifics are also hard wired into the
HLA extension of the tool. This type of solution can be
classified as a “model or application enhancement
approach”. Since the capabilities offered by the tool
enhancement approach supercede those of the
application enhancement approach, the tool
enhancement approach is recommended.

The next two sections give two distinct perspectives
on how HLA interfaces for simulation tools could look
like: the first one is the programmer’s perspective (the
person developing the HLA interface and doing the low-
level programming), the second one is the user’s
perspective (the person developing HLA based models).

The Programmer’s Point of View

For the actual task of accessing the HLA API by
doing low level programming the following general
strategies have been introduced in (Straßburger et al.
1998).

1. Re-Implementation of the tool with HLA-extensions

If the source code of a tool is available this is most
likely the straightforward solution. Skopeo (Lorenz and
Ritter 1997), a web-based animation tool developed at
the University of Magdeburg, and SIMPLEX 3, a
simulation tool developed at the University of Passau,
are examples for tools for which HLA-compliance has
been accomplished in this manner.

2. Extension of intermediate code

 Some simulation tools translate model descriptions
written in a tool-dependent modeling language into
another programming language (e.g. C++). This
intermediate code is then compiled to an executable file.
It is possible to modify this code to realize the HLA
extensions. Since this code is compiler generated, an
automated solution is desirable. (Klein et al. 1998)

3. Usage of an external programming interface

 This solution is well suited for tools that offer an open
and extensible architecture. The tool should offer a
library interface (in Windows: a DLL interface) with the
ability to call arbitrary functions or methods in these
libraries. Some tools provide a somewhat similar
interface by providing the possibility to include C or
FORTRAN subroutines.

4. Coupling via a gateway program

The last solution for tools which can not be
connected to the RTI by any of the prior methods is the
development of a gateway program. The gateway
program could communicate with the simulation tool via

appropriate means (e.g. files, pipes, ports, network)
depending on the capabilities of the simulation tool.
Ongoing activities of some German Fraunhofer
Institutes working together in the DZ-SIMPROLOG
initiative use an approach similar to this gateway
approach. The intention is to build a so-called “RTI-
enabler” which will be universal for a variety of
simulation tools (e.g. Simple, MOSYS), but limited to
the application domain of logistical simulations. The
simulation tools to be connected using this tool have to
incorporate an adapter support into the tool (Mertins et
al. 1998, Mertins et al. 1998a).

The four strategies discussed above address the
question of where and how to perform the low level
access to the HLA interface from the programmer’s
point of view. Nothing is said yet about in which form
the user (i.e. the model developer) will be confronted
with the HLA API and how the access to the HLA
interface could look like.

The User’s Point of View

There are two general ways of providing HLA
functionality to a model developer. The first alternative
is to provide a simulation language or simulation tool
specific mapping between the HLA API (e.g. the C++ or
JAVA API) and a tool specific API. The second
alternative is to totally “hide” the HLA functionality
from the model developer. Both alternatives are being
elaborated on next.

Mapping from HLA API into a tool specific API

This solution is well suited for cases, where a library
interface of the simulation tool is used to provide HLA
functionality. In this case the library provides the users
with functions that they have to call from within their
models. The functions that the model can call should
correspond with the RTI-ambassador methods defined in
the HLA Interface specification. With that a mapping
solution for the first part (the information flow from the
simulation tool to the RTI) of the two-part HLA
interface has been found.

RTI Ambassador

Federate Ambassador

Simulation
Tool

Wrapper
C / C++

RTI Library
C++

Runtime Infrastructure (RTI)

Figure 1: Using Wrapper Libraries as HLA-Interface for
Simulation Tools

To build a solution for the second part of the HLA
API (the information flow from the RTI back into the
simulation tool) is somewhat more difficult, since most
simulation tools do not provide the possibility to define
functions that can be called from the outside
(“callback”-functions). Therefore the wrapper library
has the additional task of implementing the federate
ambassador and receiving all incoming information
(Figure 1). The federate ambassador should be
implemented in a model independent manner, so that
incoming data is stored in queue and buffer areas or is
delivered directly to the simulation model.

It is then the task of the wrapper library to reflect the
information which it has received into the simulation
tool.

For this task several alternatives can be considered:

• Shared memory areas: If the simulation tool has
the capability to pass pointers about its internal
data structures the wrapper library can directly
access the simulated objects.

• Using dynamic data exchange techniques: Some
tools offer “copy and paste”-like capabilities
(e.g. object linking and embedding (OLE) under
MS Windows) that can be used for transferring
data into the model. Care has to be taken that the
tool offers this capability not only during the
preparation phase of the model, but also at
runtime, as some tools (e.g. Pro Model) do not.

• Pulling mechanisms: A last alternative that
should only be applied if no other way to transfer
the data from the wrapper library to the tool can
be found is to apply pull mechanisms. In this
approach the tool constantly issues queries to the
library if new data has been received.

In addition to the technical approach for transferring
the information into the simulation tool it is also
necessary to adopt the simulation model to properly
react on the change of state variables from outside. This
also constitutes the slight disadvantage of the mapping
approach: The simulation model has to be made aware
of the fact that it is not a stand-alone model. Given a
powerful modeling language like SLX with its control
variable mechanisms this can be relatively straight-
forward, though.

The main advantage of the mapping approach is that
the model developer can influence every little detail
with respect to the HLA functionality. He / she can
influence the synchronization mechanisms, data
exchange, lookahead issues, etc., but does not have to
care about the RTI-tick mechanisms.

The “Below-the-Surface” Approach

For users who do not wish to get very deep into HLA
programming and would rather like to have an

automated solution, an approach where all HLA
functionality is hidden from the user is desirable.

In addition to the normal simulation model the user
ideally would only have to establish an Simulation
Object Model (SOM) as required by HLA and the
simulation tool would perform all HLA-housekeeping
tasks below the surface.

Some of the tasks that needed to be done by the
simulation tool below the surface are stated in the
following:

• Synchronization with other federates: A zero
lookahead approach would ensure universal
validity, although it is (due to performance
issues) generally desirable to operate with larger
lookahead values. The tool would automatically
synchronize with other federates via the standard
HLA mechanisms. Special care has to be taken
that only relevant events are synchronized if
combined or pure continuous models shall be
used.

• Automatic publishing and subscribing of HLA
object and interaction classes.

• Automatic generation of updates / interactions if
model variables that are reflected in HLA objects
or interactions change.

• Automatic ghosting of objects and mapping onto
appropriate model variables, special care has to
be taken on multiple object instances of the same
class.

• Conversion between tool specific data types and
data types as defined in the Federation Object
Model (FOM). This also requires conversion of
different endian-types of different hardware
platforms.

Such a below-the-surface approach can theoretically
be applied, if either the source code of the simulation
tool is available or an automated solution for extending
the simulation model can be developed. The prototype
of the HLA interface for SIMPLEX 3 introduced in the
next section is an example were this approach was
taken.

EXPERIENCES & PROTOTYPES

This section introduces some prototypical HLA
extensions for various tools and discusses how the
theoretical concepts discussed in the previous sections
where applied in the implementation. Table 1 gives an
overview about the various prototypes and which
approach for an HLA Interface has been chosen.

Tool Programmer’s Point of View User’s Point of View Model
Independent?

Re-Imple-
mentation

External
Program-
ming
Interface

Gateway
Program

Intermediate
Code

Mapping Hidden

SLX X X X
Pro Model X X
Automod X X
Simplex 3 X X X
Modsim III X X X

Table 1: Categorization of the HLA interfaces for the simulation tools discussed in this section

SLX

SLX is a new discrete event simulation tool for the
Windows 95/98/NT operating systems (Henriksen
1996). SLX has a library interface which allows to call
functions in any standard Windows DLL. Therefore
SLX qualifies for the general possibility of applying a
wrapper library for creating a HLA interface (Figure 2).

In the solution for SLX (Straßburger and Klein 1998)
the HLA API is mapped into a tool specific API. The
model developers have to enhance their models by
certain API calls. Since SLX offers the possibility to
pass pointers when calling libraries a shared memory
approach is used for transferring data back into the
simulation tool: Incoming updates or interactions are
automatically stored in the associated SLX objects.

Runtime Infrastructure (RTI)

RTI Ambassador

Wrapper
C / C++

RTI Library
C++

SLX-Model

Simulation ObjectsSimulation Objects
......

SLX_StateObjectSLX_StateObject

Function CallsFunction Calls

Federate Ambassador

Tables

Wrapper-
Functions

Figure 2: The HLA Interface for SLX

The main advantage of the solution for SLX is that
the user can use the entire flexibility of HLA (by
providing the possibility of calling almost every HLA
API function), but at a much more comfortable level as
if dealing with the raw HLA API.

Several existing stand-alone SLX models have
successfully been extended with HLA functionality by
using the HLA interface for SLX with rather few
modifications (Klein et al. 1998a).

The HLA Interface for SLX in its current versions for

RTI 1.0.3 and RTI 1.3 and also future versions will be
available as an add-on product for SLX.

Pro Model 4.0

In a cooperative effort of the Fraunhofer Institute
“Produktionstechnik und Automatisierung (IPA)” in
Stuttgart and the University of Magdeburg it was tested
if the HLA extension for SLX could be transferred into
an HLA extension for Pro Model 4.0.

Pro Model 4.0 also offers a library interface for
extending the tool by using DLL’s. The functionality by
this library interface is rather limited:

• It is not possible to pass pointers to Pro Model
entities

• Only double-values can be returned by a DLL
function

• The format of the parameters passed to the DLL has
to be known at compile time

Although these are relatively strict limitations it was
generally feasible to apply the SLX approach to Pro
Model. Limitations apply regarding the synchronization
and the data transfer back into the model.

These limitation result from the fact that Pro Model

a) does not have a built-in function for determining
the time stamp on the next event. Therefore only
time stepped synchronization approaches can be
applied.

b) the transfer of received data back into Pro Model
is not possible using shared memory areas. In a
first approach Pro Model’s OLE interface was
tested for its suitability. Soon it was learned that
this interface can only be used in the preparation
phase of the model. Therefore in a first prototype
pulling mechanisms were tested and applied for
querying for received data.

Automod

In an independent development at the Institute for
Machine Tools and Factory Management of the
Technical University of Berlin a model dependent HLA
extension for the simulation tool Automod was created
(Seliger et al. 1999). Like the two above mentioned
solutions for SLX and Pro Model this solution is also
based on a wrapper library which provides a tool
specific mapping of the HLA interface to the model.
Since in this solution also some model specifics are
hard-coded into the C++ sources the solution is also
model specific. In the development of the DLL similar
problems as experienced in the Pro Model interface
were encountered (no built in functions for
determination of the time stamp of the next event,
difficulties transferring data back into the model).

SIMPLEX 3

To verify whether the theoretical approach of hiding
all HLA functionality from the model developer is
practicable at all, a cooperative effort between the
Universities of Passau, Dresden, and Magdeburg to
implement an HLA interface for SIMPLEX 3 was
started (Lantzsch et al. 1999). Simplex 3, which has
been developed at the University of Passau, is a
simulation system which allows the creation of discreet,
continuous, and combined models (Schmidt 1995).

In SIMPLEX 3 several model components (called
Basic Components) can be connected by using a so-
called “High Level Component” which defines the
connections between the Basic Components. Basic
Components can run independently from each other. It is
not relevant for them whether they are connected to
other components or not. This fact results from the so-
called Glass-Box principle of SIMPLEX, which states
that each component can read variables from other
components.

The only change in using Basic Components in
different combinations relates to the functionality of the
entire model. The same Basic Components connected by
different High Level Components will usually form a
different model.

This property of SIMPLEX was used for the HLA
extensions. A new item, called “HLA component” has
been introduced which connects variables of a
SIMPLEX model with HLA objects and interactions.
With this solution it is not necessary to change or extend
the actual modeling language of SIMPLEX (Simplex
Model Description Language, MDL). The only
extension from the model developer’s point of view lies
in the fact that he / she has to specify an HLA
component for the mapping between SIMPLEX data
structures and HLA data structures.

All synchronization and data exchange is handled

internally by the HLA extensions to the SIMPLEX
runtime system.

This has the main advantage of being very
comfortable for the user, but also some disadvantages
regarding the impossibility to use all flexibility that
HLA could offer. For a general validity of the below-
the-surface approach a conservative synchronization
with zero lookahead has to be assumed. Depending on
the model higher lookahead values would be possible
and useful. Further investigation is scheduled in order to
add more flexibility.

MODSIM III

MODSIM III recently has been equipped with an
HLA support by its developing company. MODSIM’s
object library support for the HLA is integrated with
other parts of the MODSIM III system such as
SimGraphics. The raw HLA API is packaged into
MODSIM objects that support all HLA areas.
MODSIM's HLA support provides automatic handling
of message pumping, exceptions, and callbacks.

MODSIM III also provides universal datavalue
representation so that data can be transported "through
the wire" between different computers and operating
environments.

With this the solution for MODSIM provides a
somewhat similar approach as the solution for SLX: A
tool specific mapping of the HLA API into a tool
specific API has been performed. The main difference
lies in the implementation: While it was possible in the
MODSIM approach to actually access and modify the
source code of the tool this has not been done for SLX.
Using the advanced statement concept of SLX, it is
possible to make the SLX-HLA-Interface behave as if it
was built-in into SLX, though.

REFERENCE FEDERATIONS

For testing the HLA-interfaces of the simulation tools
described above, several reference federations have
been implemented. Some of them are described in the
following sections.

The Distributed Driving Federation

In this federation a microscopic urban traffic model
written in SLX (Klein et al. 1998a) is connected with a
real-time driving simulator for SGI-workstations. The
federation successfully demonstrated the cooperation of
two HLA-federates with different time-advancement
mechanisms (logical time in SLX vs. real-time in the
driving simulator) and the cooperation between different
platforms (Intel PC vs. SGI). The latter was achieved by

using the capability of the SLX-HLA-Interface to
automatically convert different endian types.

This federation was the first large-scale test for the
SLX-HLA-Interface.

The Simplex 3 – SLX Federation

This federation was developed in a co-operation
between the HLA team in Magdeburg and the University
in Passau and is the first federation featuring a federate
developed with the simulation system Simplex 3. The
federate developed with Simplex 3 simulates a barrel
filling station. The filling of barrels is modeled as a
continuous process described by a differential equation.
The second federate is a SLX model which simulates the
logistical processes in a transport agency. Orders for
barrels are generated from different locations throughout
Germany and passed to the barrel filling station. The
SLX federate also performs an online visualization of
the federation with Proof Animation for Windows
(Figure 3).

Figure 3: Screenshot of the Simplex-SLX Federation

The major goal of this federation is to demonstrate
the cooperation of a discrete simulation model written in
SLX and a combined model developed with Simplex 3.

The Streetcar Federation

In this federation online data from the central
computer of Magdeburg's local traffic company is used
in an analytical simulation model. Different setups exist
for this federation. The typical setup consists of two
federates: The first federate performs a schedule based
simulation of the streetcar system in Magdeburg. The
second federate connects online to the central computer
of the streetcar system and sends position updates into
the federation. The first federate can react to these
updates and adjust the current state of the simulation
accordingly. Both federates have been implemented
using SLX and the SLX-HLA-Interface. The first

federate also uses the new Proof for Windows to
perform online animation of the system. A third
federate, which is based on the Web-based animation
tool Skopeo, can be used in addition to the online
animation with Proof to provide visualization anywhere
in the WWW. Figure 4 shows a screenshot of the system
obtained with Proof Animation.

The federation was implemented to demonstrate an
increased flexibility by using interoperable components
(federates). The streetcar federate can be combined
either with the online-federate or with a surrogate, which
simulates online-date from a playback file to analyze
different scenarios. No modifications have to be
performed at the streetcar federate for this purpose.

Figure 4: Screenshot of the Streetcar Federation

Further Prototypes

• The SLX - Pro Model Federation

In this federation the interoperability between
SLX models and a simulation model written in
Pro Model 4.0 has been demonstrated. The
federation models a production chain where
different stages of a product’s life cycle are
modeled either by SLX or by Pro Model.

• The SLX - Automod Federation

This federation demonstrates a cooperation
between SLX and Automod in the area of
production networks (Seliger et al. 1999) and is
thus similar to the one described in the previous
section.

CONCLUSION AND OUTLOOK

HLA offers a new simulation interoperability
standard that will influence the non-military simulation
market in a similar way it currently influences the area
of military training simulators.

While in the military sector most applications are
developed using C++ and thus automatically qualify for
the usage of HLA the situation in the civil sector is
different. The use of commercial simulation tools is very
common. Although there is a need for simulator
interoperability in the civil sector, too, the price for
developing a tool specific HLA interface is relatively
high.

Therefore it will take more time and also more insight
on the side of the tool developers until HLA compatible
simulation tools will become (commercially) available.
SLX and MODSIM III are the first widely used
commercial simulation tools which already provide
HLA interfaces to date. More tools are hopefully to
come soon.

Our research shows that HLA interfaces do not
necessarily have to be built by the tool developers
themselves. Depending on the capability of the
simulation tool third party developers can implement
HLA add-on packages for simulation tools.

The ultimate goal for simulator interoperability
should be a built-in and transparent HLA interface for
every simulation tool as demonstrated in the Simplex 3
approach. In order to achieve this goal modifications of
the runtime system of a simulation system seem to be
inevitable.

With that kind of HLA interface interoperability
between different model components implemented in
different simulation languages in a “plug-and-play”
manner could come true.

The latest information about ongoing HLA-
integration efforts can be found at http://isgsim.cs.uni-
magdeburg.de/hla.

REFERENCES

Department of Defense (US). 1997. High Level
Architecture Interface Specification, Version 1.3.
Available online at the HLA Homepage: URL
http://hla.dmso.mil/.

Henriksen, J.O. 1996. An Introduction to SLX. In
Proceedings of the 1996 Winter Simulation Conference,
eds. J.M. Charnes, D.M. Morrice, D.T. Brunner, J.J.
Swain, pp. 468-475. Institute of Electrical and
Electronics Engineers, Piscataway, New Jersey.

Klein, U., S. Straßburger, J. Beikirch. 1998.
Distributed Simulation with JavaGPSS based on the
High Level Architecture. International Conference on
Web-based Modeling and Simulation, Jan. 11-14, 1998,
San Diego.

Klein, U., Th. Schulze, S. Straßburger and H.-P.
Menzler. 1998a. Traffic Simulation Based on the High
Level Architecture. In Proceedings of the 1998 Winter
Simulation Conference, eds. Medeiros, D.J. and Ed
Watson, SCS, Washington.

Lantzsch, G., S. Straßburger, C. Urban. HLA-basierte
Kopplung der Simulationssysteme Simplex III und SLX.
In Deussen, O., V. Hinz, P. Lorenz (Ed.), Tagung
Simulation und Visualisierung. March 4.-5. 1999,
Magdeburg.

Lorenz, P. and K. C. Ritter. 1997. Skopeo: Platform-
Independent System Animation for the W3. In Deussen,
O. and P. Lorenz (Ed.), Proceedings of the Simulation
and Animation Conference Magdeburg, March 6-7,
1997. SCS European Publishing House San Diego /
Erlangen / Ghent / Budapest 1997, pp. 12-23.

Mertins, K., M. Rabe, P. Rieger. 1998. Taking
Advantage of Process Oriented Reference Models for
Setting Up Federations for Distributed Simulation in
HLA Environments. In Zobel, R. and D. Moeller (Ed.),
Proceedings of the 12th European Simulation
Multiconference. June 16-19, 1998. pp. 259-263.

Mertins, K., M. Rabe, P. Rieger. 1998a. Einsatz von
Simulations-Referenzmodellen für eine effiziente
Erstellung von Simulationsverbunden auf Basis von
HLA. In Engeli, M. and V. Hrdliczka (Ed.),
Proceedings of the 12th Simulation Symposium ASIM
98. Sept. 15-18, 1998. pp. 299-305.

Schmidt, B. 1995. Simplex II - Benutzerhandbuch.
SCS Publications, San Diego 1995.

Seliger G., D. Krützfeldt, P. Lorenz, S. Straßburger.
1999. On the HLA- and Internet-based Coupling of
Commercial Simulation Tools for Production Networks.
International Conference on Web-based Modeling and
Simulation. Jan. 17-20, 1999, San Francisco.

Straßburger, S., Klein, U. 1998. Integration des
Simulators SLX in die High Level Architecture. In
Lorenz, P., Preim, B. (eds.), Tagung Simulation und
Visualisierung 1998 Magdeburg. SCS Europe
Publishing House, Delft, Erlangen, Ghent, San Diego.
pp. 32-40.

Straßburger, S., T. Schulze, U. Klein, J.O. Henriksen.
1998. Internet-based Simulation using off-the-shelf
Simulation Tools and HLA. In Proceedings of the 1998
Winter Simulation Conference, eds. Medeiros, D.J. and
E. Watson, Washington D.C.

AUTHOR BIOGRAPHY

STEFFEN STRASSBURGER is currently working
as a scientific assistant at the Institute for Simulation and
Graphics of the Otto-von-Guericke University,
Magdeburg. He holds a Master’s degree in Computer
Science from the same university. His main research
interests lie in distributed simulation and the High Level
Architecture. This is also the topic of his PhD thesis
which is currently being developed. His experience with
inter-networking and simulation includes a one-year-stay
at the University of Wisconsin, Stevens Point.

