DAIMLERCHRYSLER

HLA-based Distributed Simulation as an Enabling Technology for the Digital Factory

> Dr. Steffen Straßburger Research & Technology RIC/EP

- Introduction of DaimlerChrysler Research
- Distributed Simulation for the Digital Factory
 - Motivation Digital Factory
 - Distributed Simulation Concept and Vision
 - Current Developments and Projects
- Challenges and Open Questions
- Summary

- Introduction of DaimlerChrysler Research
- Distributed Simulation for the Digital Factory
 - Motivation Digital Factory
 - Distributed Simulation Concept and Vision
 - Current Developments and Projects
- Challenges and Open Questions
- Summary

Passenger Cars Mercedes-Benz, smart

COM/MD 2.01a E 3/2000 S. Straßburger, RIC/EP

4

Passenger Cars and Trucks Chrysler, Plymouth, $Jeep_{e}$, Dodge

COM/MD 3.01a E 3/2000 S. Straßburger, RIC/EP

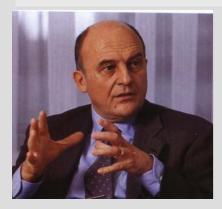
Passenger Cars and Trucks Chrysler, Plymouth, $Jeep_{e}$, Dodge

COM/MD 3.01b E 3/2000 S. Straßburger, RIC/EP

6

DaimlerChrysler Research & Technology in Ulm (Germany)

7

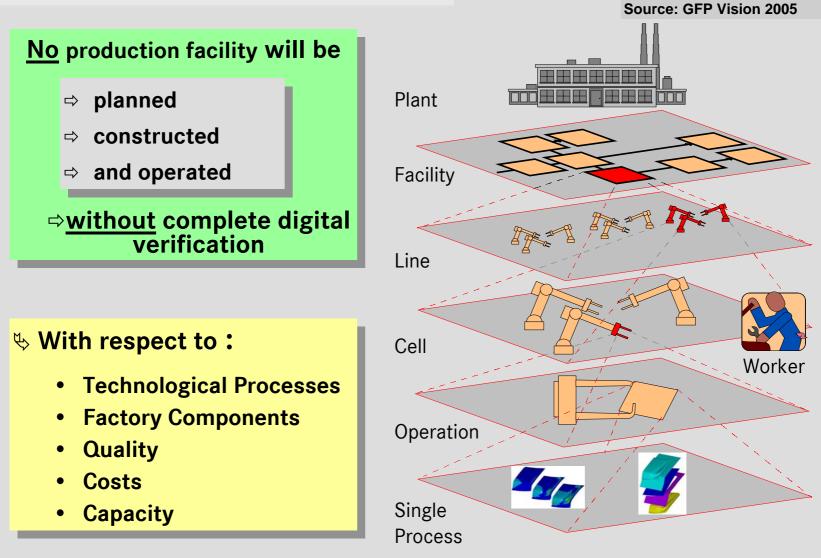

Neue Struktur des Ressorts ab 1.1.2002

		r Technology RT ieter Vöhringer		
	Research Areas	leter vonninger		Other Directly Reporting Functions
Research Body and Powertrain RBP	Research Electronics and Mechatronics REM	Research Information and RIC	Communication	Chief Environmental Officer of the DaimlerChrysler Group ENV
Prof. Dr. Herbert Kohler	Prof. Dr. Günter Hertel	Prof. Dr. Wolfgang	Merker	Prof. Dr. Herbert Kohler ²⁾
Combustion Engines and Powertrain RBP/C TBD	Acoustics and Climate Comfort REM/A Dr. Hans-Ulrich Huss	Autonomous Systems Understandin RIC/A		Corporate Quality Management CQM
		Hans-Georg Me	tzler	Prof. Dr. Günter Hertel ²⁾
Alternative Energy and Drive Systems RBP/A Dr. Wolfgang Dönitz ³⁾	Vehicle Sensing and Communication Electronics REM/C	Information Technology for Engineering RIC/E Alfred Katzenbach Software Technology RIC/S Dr. Klaus Grimm		Business Administration/Controlling RTC
Body and HMI	Dr. Peter Narozny			Günter Hönes
RBP/B Dr. Bernd Pletschen	Mechatronic Systems REM/S Dr. Detlef Senger			Research and Technology Strategy RTS
Surface and Functional Materials	Electrics/Electronics Architecture and			Dr. Erich Lepiorz
RBP/F Dr. Siegfried Döttinger	Integration REM/E			Intellectual Property Management IPM
Structural Materials RBP/S TBD	Dr. Gerhard Hettich Automotive Microsystems			Rolf Einsele
Manufacturing Technology RBP/M	REM/M Manfred Klein			Research Policy and Communications RTP
Prof. Dr. Heinrich Flegel				Dr. Horst Soboll
	Key Account Management			
Mercedes-Benz Passenger Cars & Smart	Chrysler Group	Commercial	ITM	
Mitsubishi Motor Corporation	Non-automotive (EADS, ContiTemic, Aero Engines)	Vehicles DC Services	DSe GSP	¹⁾ Nominal positi ²⁾ Dual responsibi ³⁾ Staff of Dorr
Prof. Dr. Herbert Kohler	Prof. Dr. Günter Hertel	Prof. Dr. Wolfgang Merker		effective: January, 1 st 20

- Introduction of DaimlerChrysler Research
- Distributed Simulation for the Digital Factory
 - Motivation Digital Factory
 - Distributed Simulation Concept and Vision
 - Current Developments and Projects
- Challenges and Open Questions
- Summary

DAIMLERCHRYSLER

Motivation / User Requirements (1)



Helmut Petri Board of Directors Mercedes-Benz AG

(Source: Mercedes Magazin 1/2000)

- Virtual Planing and Shaping of factories will will massively increase
- Intensive simulation of processes in advance
- Reduce start-up time by 50%
- Detailed planning and optimization of processes

Motivation / User Requirements (2)

Motivation / Current Situation (3)

	Digital Mock Up (DMU)	Digital Factory	
Use	product development	process development, production, supply chain and customer order execution	
Goal	100% digital car	100% digital processes	
Optimisation	product properties	time, costs	
Reference	3D CAD- model	(3D) simulation model	
System world	clear, CATIA- pipelines	very heterogeneous	
Possibility of data transition	high	low	
Current Demand	high	Low (but increasing)	

Motivation / Key Aspects for Distributed Simulation (4)

- <u>Complexity increases</u> (Product, Process, Production program, Customer structure, IT-Structure etc.)
- Cross-linking / Interconnections and dynamics of systems increases
- <u>Stronger stochastic behavior</u>
- Global optimization of all processes and operations required

Consequence: Continuous Digital / Virtual Optimization is necessary

- Introduction of DaimlerChrysler Research
- Distributed Simulation for the Digital Factory
 - Motivation Digital Factory
 - Distributed Simulation Concept and Vision
 - Current Developments and Projects
- Challenges and Open Questions
- Summary

HLA – the State-of-the-Art for Simulation Interoperability (1)

- High Level Architecture for Modeling and Simulation (HLA):
 - Architecture for combining individual simulations (federates) into a coordinated ensemble (federation)
- U.S. Department of Defense provides
 - HLA Standard
 - Infrastructure Software (Runtime Infrastructure, RTI)
 - Support Tools
- Architecture to support *Interoperability* and *Reusability* of different kinds of geographically distributed programs

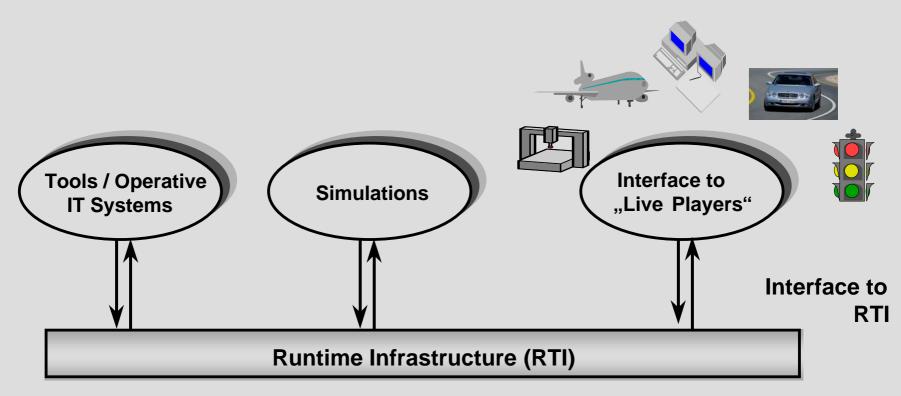
Distributed Simulation based on HLA can be a solution for simulating continuos process chains

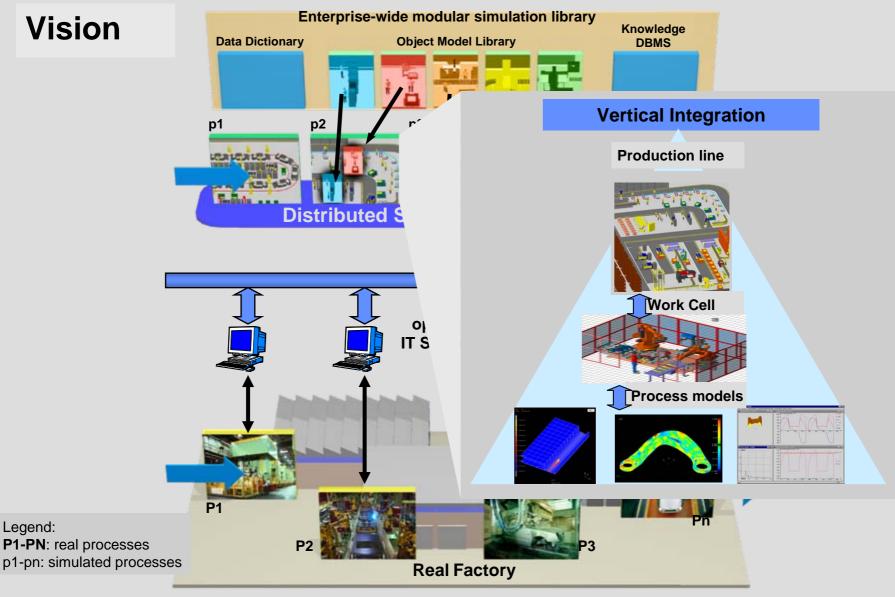
Combination of different submodels developed with different simulation tools to form a overall simulation of the production facility

HLA – the State-of-the-Art for Simulation Interoperability (1)

- High Level Architecture for Modeling and Simulation (HLA):
 - Architecture for combining individual simulations (federates) into a coordinated ensemble (federation)
- U.S. Department of Defense provides
 - HLA Standard
 - Infrastructure Software (Runtime Infrastructure, RTI)
 - Support Tools
- Architecture to support *Interoperability* and *Reusability* of different kinds of geographically distributed programs

Distributed Simulation based on HLA can be a solution for simulating continuos process chains

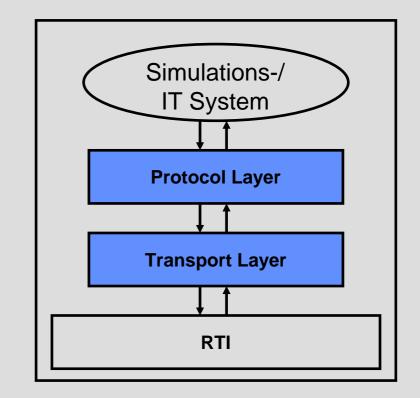



Combination of different submodels developed with different simulation tools to form a overall simulation of the production facility

....

HLA – Functional Overview

Data Collectors/ Environmental Information Systems Passive Viewers Command & Control Systems


S. Straßburger, RIC/EP

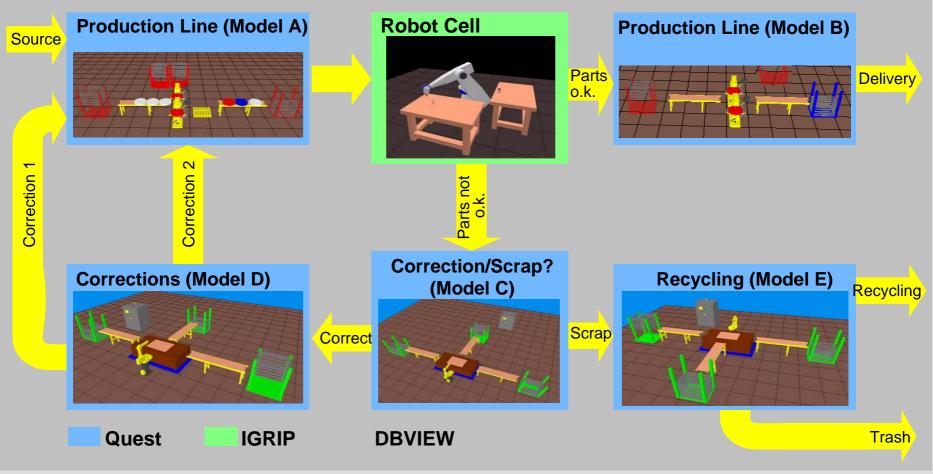
Legend:

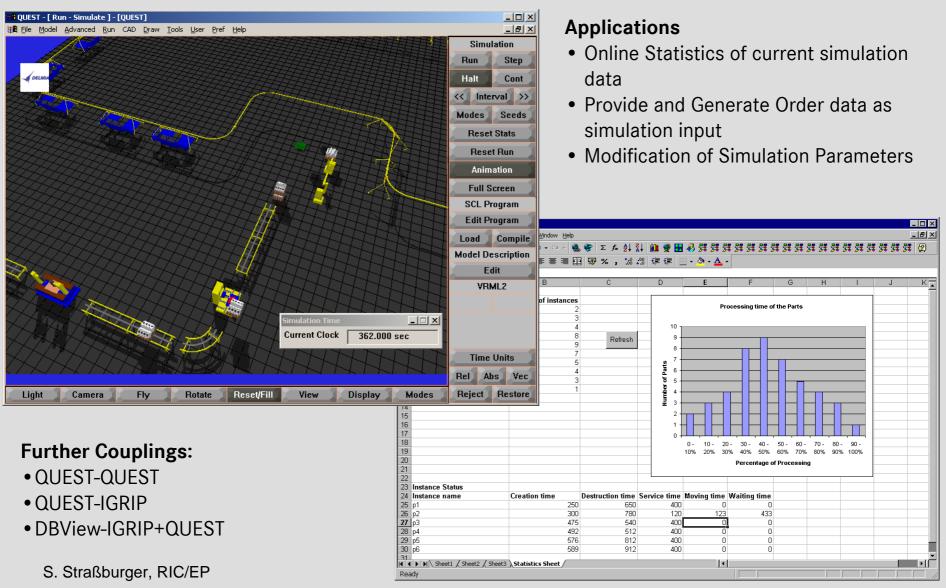
- Introduction of DaimlerChrysler Research
- Distributed Simulation for the Digital Factory
 - Motivation Digital Factory
 - Distributed Simulation Concept and Vision
 - Current Developments and Projects
- Challenges and Open Questions
- Summary

Universal Interface Concept

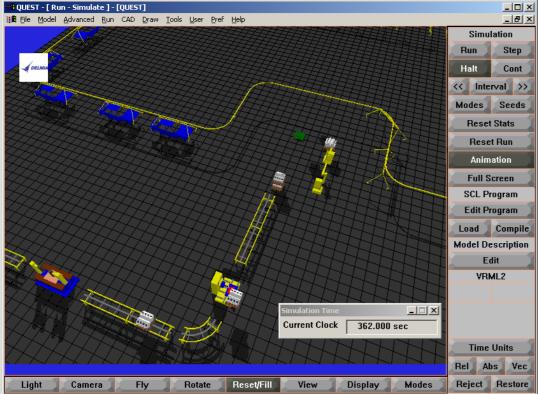
- Concept for a Universal Federate Adapter (UFA) which simplifies the usage of the HLA IF Spec
- Fast Connection of IT systems
 - Simulation Simulation
 - Simulation Non-simulation
 - Non-simulation Non-simulation
- Dynamic Communication between IT systems at runtime
- Usage of Publish-/Subscribe Mechanisms for communication of attribute changes

Distributed Simulation in the Global Context: Enterprise wide process for Distributed Modeling and Simulation is required

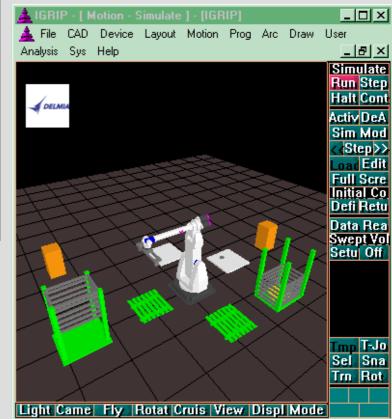

- (1,2) Product-, Process-, and Resource Data /Creation of the static process model
- (3) (semi-)automatic derivation of the dynamic process model
- (4,5) Management of object and simulation models / Connection and mapping of the object models
- (6,7) Interoperability at runtime, communication backbone
- (8) Real data as input from existing IT systems



Application Scenario "Measurement Federation"


Visualization in DBVIEW

Scenario "Quest and Excel" (Material Flow Scenario)



Scenario "Quest & IGRIP" (Material Flow and Robot Simulation)

Objectives and Scenario

- Example for vertical integration
- Integration of a robot simulation with a material flow simulation
- Simulation at different levels of detail

- Introduction of DaimlerChrysler Research
- Distributed Simulation for the Digital Factory
 - Motivation Digital Factory
 - Distributed Simulation Concept and Vision
 - Current Developments and Projects
- Challenges and Open Questions
- Summary

User Education - Demonstration of the Advantages and Development of a clear Business Case

- What makes HLA/Distributed Simulation useful for civilian/ industrial applications ?
 - Business Case for military applications very clear
 - In comparison to military applications, the civilian sector uses simulation only very seldom and for isolated problems
- Where is the Killer Application which shows the benefit?
 - Only niche applications or the "usual suspects" have been demonstrated (traffic and harbor simulation, civilian training applications)

Software Vendors need to adopt HLA for their systems

- Simulation system vendors need to adopt HLA as interoperability standard and integrate HLA interfaces into their systems
- Reality: Often reluctant position, because of implementation and maintenance cost, and reluctance towards offering interoperability with a competitor's system

Avoid potential interoperability pitfalls

- Certain issues in the HLA IF Spec require proprietary protocols
 - Sample "Ownership Transfer"
 - No mechanism for a directed, time-stamped ownership transfer
 - Workaround are easily possible, but lead to incompatibilities
 - Standardization required !
- Standardized Object Models for Civilian Applications Needed
 - FOM "Manufacturing Simulation"
 - FOM "Digital Mockup"
 - ...

Performance and Usability

- Performance of distributed simulations
 - Slowdown vs. Speedup
 - Implications of lookahead to accuracy
 - Mechanisms for automatic lookahead determination from any given simulation model
- Usability needs to be simplified for mainstream application
 - Easy interfaces to (distributed) simulation
 - Excel is the most common planning tool in many companies (!)
 - Central run control/management components needed

- Introduction of DaimlerChrysler Research
- Distributed Simulation for the Digital Factory
 - Motivation Digital Factory
 - Distributed Simulation Concept and Vision
 - Current Developments and Projects
- Challenges and Open Questions

• Summary

Summary

- HLA can be a basis for the digital factory and other civilian simulation applications
- Vision & Objective:
 - Obtain a continuos and overall representation of the virtual factories
 - Perform global optimizations by combining individual component and analyze interdependencies
 - Integrate HLA into existing IT infrastructure
- Remaining Challenges
 - User & Vendor acceptance
 - Standardization
 - Performance
 - Usability

A Grand Challenge (?)

- To reach true Plug-and-Play Interoperability of simulation applications and models in an application domain X, where
 - X = Automotive Industry
 - X = Semiconductor Production
 - X = Manufacturing Simulation
 - X = Air Traffic Simulation
 - ...