
On-Line Data Processing in a Civil Transportation
Federation

Thomas Schulze, Steffen Straßburger

Department of Computer Science
Otto-von-Guericke University Magdeburg

Universitätsplatz 2
39106 Magdeburg, Germany

Ulrich Klein

Fraunhofer Institute for
Factory Operation and Automation

Sandtorstrasse 22
39106 Magdeburg, Germany

Keywords:
HLA, on-line data, discrete event simulation, civil application.

ABSTRACT: While HLA originates in the military simulation community, civil application areas are slowly evolving.
This paper introduces some civil application areas for HLA and presents a civil transportation application. The
application demonstrates how the civil simulation community can make use of the benefits that HLA offers: namely re-
usability, interoperability, and increased flexibility of simulation components.
This paper also focuses on how on-line data (i.e. data from real-time dependent processes) can be used in analytical
simulation models and how the use of HLA based components can facilitate the integration of this kind of data into
simulations.

1. Introduction / Motivation

Interoperability and reusability are key topics for the
military and civil simulation community. In order to
evaluate the potential of HLA in the civil application
domain, the University of Magdeburg has developed several
prototypes which cover different application areas. Several
simulation and animation tools have been tested for HLA
compliance. HLA interfaces for some of these tools (SLX,
Simplex, Proof Animation, Skopeo) have been developed.

The prototypical federation described in this paper
demonstrates how HLA addresses the need for flexibility
and cost effectiveness of software systems in the civil
simulation community and how simulation and animation
tools used in the civil world can work together under HLA.

2. Public Transport Prototype

The main application described in this paper is a simulation
of the public transportation system in the city of Magdeburg
[1]. The actual simulation model behind it is a classical
analytical (or constructive) simulation. The most interesting
interoperability aspect is that an real-time data source is
used in addition to the model. Communication between the

simulation and the on-line data source, as well as with other
federates, is based on the HLA interface.
There are different combinations of federates that can be
used for the federation depending on the specific goal of the
federation execution (Figure 1).

Figure 1: Setup of the traffic management prototype

Typical goals of the federation would be to use an up-to-
date simulation model (i.e. a simulation which has the real-
life positions of the streetcars) to do an as-fast-as-possible
forecast to reveal certain bottlenecks so the control center
manager could conduct evasive actions. In this
configuration one would use the simulation federate and the

Infrastructure

Local Traffic
Simulation

Local Traffic
Animation

Location
Information

Additional
Components

Signals Online

archived
constructed

Geographical
Information

System

Provides:
• Map
• Network
• ...

Time
Sched-

ule

archived
constructed (planned extensions)

Location
Information

Obj.Mod. Sim. OM Anim. OM Online OM ... OM GISOM Online

Identical Object Models

Route
Network

(GIS is intended to be the future network provider)

on-line federate. To do the forecast one would have to
disconnect the on-line federate or to clone the simulation
federate. Another interesting alternative is to use
constructed off-line position updates to test certain schedule
alternatives.

The following sections describe each of the federates that
have been developed and their main purpose.

2.1 The Simulation Federate

The simulation federate is the “heart” of the federation. It is
a simulation model which performs a schedule based
simulation of the public transportation system in Magde-
burg (i.e. streetcars) and has been developed using the
simulation system SLX [2].

The simulation model uses the SLX-HLA-Interface [3] to
be able to receive time-stamp-ordered events containing
position updates of the simulated objects and to synchronize
its local simulation clock with other federates. The
simulation model itself is a classical analytical simulation
model using logical simulation time.

2.2 The Animation Federates

Two different tools have been used for producing on-line
animations of the federation.

The first tool is the web-based animation system Skopeo
[4]. Skopeo is a general animation system which provides
platform-independent system animation anywhere in the
WWW. Skopeo has a prototypical HLA interface which is
based on the beta version of the Java RTI 1.0 from DMSO
which is no longer supported.

The second tool which has been used in this federation is
Proof Animation for Windows [5]. Proof Animation
provides on-line animation on Windows Platforms and can
be used by a wide variety of programs. In order to produce
on-line animation with Proof, a program to drive Proof is
needed. Since Proof is tightly integrated with SLX and an
HLA-Interface for SLX was already available, it was
decided to use SLX to drive Proof Animation.

2.3 The On-line Federate

An on-line federate is used to provide position updates from
the streetcar vehicles for the other federates.

The on-line federate starts a receiver process to connect to
the command and control computer of the Magdeburg
traffic company. From there it receives position updates
which are obtained from the “real-life” streetcars using
infrared senders which each streetcar carries.

2.4 The “Off-line” Federate

An off-line federate which has the same object model as the
on-line federate can be used to substitute the on-line
federate. This can be useful for testing certain scenarios,
e.g. operator training, or to replay a situation for further
analysis. The off-line federate uses pre-recorded data about
position updates which are read from a file.

3. Integration of On-line/Real-Time Data

As can be seen from the description of the federation, it was
necessary to integrate real-time dependent data, which is
generated by a real-life process totally independently from
the actual federation run, into the federation. The real-time
data was transferred on-line to the site where the federation
was run; therefore we refer to it as on-line/real-time data.

For our federation an approach which transparently
integrates this on-line/real-time into the federation was
needed.

It was chosen to use a separate HLA federate (the on-line
federate), which would act as provider for the rest of the
federates within a given federation.

The possible structure of an on-line federate is shown in
Figure 2.

Figure 2: Suggested structure of an on-line federate

The on-line federate has two major tasks:
1) to receive the real-time/on-line data from a gen-

erating process
2) to possibly buffer this data and send updates about it

into the federation at the according federation time.

On-line
Kernel

Cache

Receiver
Process

Federation Time Online Time

R
un

tim
e

In
fr

as
tr

uc
tu

re

Variable Coupling
Real Time

Federate

Generating
Process

O
bj

ec
t

M
od

el

These two major tasks should ideally be implemented using
two distinct operating system threads. This provides more
flexibility regarding the time advancement mechanisms the
federate can use and also prevents the federation from
possible deadlocks if the on-line source terminates
unexpectedly.

Generally, there can be different alternatives regarding the
time advancement of the on-line federate. In the context of
HLA a federate has two properties regarding its
synchronization: constrained and regulating. Both prop-
erties can be set to true or false, resulting in four major
types of federates:

1) Not constrained, not regulating

Federates with these properties are not constrained by
other federates in their local time advancement and do
not act regulating on other federates. An on-line
federate with these properties could simply send the on-
line data it receives as receive-order-events into the
federation, i.e. updates or interactions are sent when
they arrive, without any buffering in between.

2) Not constrained, regulating

For an on-line federate these settings seem to be the
most appropriate ones: The federate acts regulating on
other federates (because it generates events with time
stamps which the other federates have to take for
granted), but is not constrained by other federates. This
seems to be most obvious: The time stamp of the on-
line data is fixed and independent from the federation
time, it cannot easily subordinate itself to the federation
time. Being constrained could result in sending events
with time stamps less than the federation time, which is
clearly not allowed.

In this alternative the on-line federate could act as a
pacemaker for the entire federation, i.e. it sets the an
upper limit on the time to which all other federates are
allowed to advance.

3) Constrained, regulating

Under certain conditions it may be desirable to have an
on-line federate which is constrained as well as
regulating. In this case incoming on-line data needs to
be buffered (because it simply does not constrain itself
to HLA time management). Time advance requests

have to be made for the next time stamp of an on-line
data update. If no such event is yet received, the
federate will block all other constrained federates until
it receives the next on-line event.

Only after a time advance grant is received, the
buffered on-line update will be sent into the federation.

4) Constrained, not regulating

The last combination can be used if the on-line federate
has to subordinate itself to the federation time
advancement, but is not allowed to slow down other
federates. In this case it is again not possible for the
federate to send the updates as time stamp ordered
events, but only as receive-order-events.

With respect to the HLA software structure and the
properties discussed above the following figure (Figure 3)
gives a detailed view on the possible structure of an on-line
federate.

Figure 3: Detailed structure of an on-line federate with
respect to HLA

4. Animation Systems under HLA

In the civil simulation community it is frequently the case to
have separated simulation and animation tools. In a
monolithical analytical simulation the simulation model
would produce some kind of trace file which would then be
read by an animation tool (e.g. Proof Animation) which
would produce a post-run animation of the simulation. The
layout file usually needs to be produced separately.

Under HLA post-run animations play a less important role.
Although they may prove useful for certain mission
rehearsals and replay scenarios, on-line animations of single
federates or the entire federation are usually desirable.

The same applies for civil HLA federations where usually
on-line animations are required. Therefore we adopted two

Online-
Kernel

Cache

Receiver-
process

Federation Time Online-Time

R
un

tim
e

In
fr

as
tr

uc
tu

re

Coupling
Strategy

Federate

O
bj

ec
t m

od
el

RTI
Library

RTI Amb.

Federate-Ambassador

þ time_contrained?
þ time_regulating?

general animation systems to be capable to perform on-line
animations under HLA. The tools and how they were
integrated into the federation are described in the next
sections.

4.1 Proof Animation for Windows

Proof Animation provides on-line and post-run animation
on Windows Platforms (i.e. Windows 95/98/NT) and can be
used by a wide variety of programs. While the post-run
version of Proof is a stand-alone executable, the on-line
version is provided as a Windows library (DLL). In order to
produce on-line animation, a program to drive Proof (i.e.
make calls to the DLL) is needed. Since Proof is tightly
integrated with SLX and an HLA-Interface for SLX was
already available, it was chosen to use SLX to drive Proof
Animation.

Several general alternatives can be considered to use the
combination Proof/SLX in HLA federations:

1) Use Proof animation for visualization of a single
federate. In this case the SLX federate would ideally
drive Proof Animation directly.

2) Use Proof Animation for visualization of the entire
federation. One existing SLX federate has the
secondary task to also produce the on-line animation
of the entire federation. This alternative is only
possible, if an animation is only needed at one
location.

3) Use a separate SLX-program acting as a passive
viewer federate which only receives the position
updates and produces an on-line animation on its
own. This has the advantage that a variable number
of animations can be produced at different locations.

All three alternatives have certain advantages. Alternative 1
is very easy to implement, since everything runs in one
federate. Also, this alternative saves on the bandwidth, since
position updates do not necessarily have to be sent into the
federation for animation purposes only.

Alternative 2 provides an easy alternative for providing an
animation possibility for the entire federation.

Alternative 3 is the most general, since it allows for more
than one animation to take place. Different views on the
animation can be selected at the same time by different
users.

The default animation for the streetcar prototype uses
alternative 2. Additional animations can be obtained at the
same time (non-exclusively) by Skopeo and potentially by a
Proof/SLX-federate based on approach 3. Figure 4 shows a
screenshot of the system obtained with Proof Animation.

Figure 4: Screenshot of the streetcar federation obtained
with Proof Animation for Windows

4.2 Skopeo Animation

Skopeo is a general animation system which provides
platform-independent system animation anywhere in the
WWW [4,6].

Skopeo also exists in a post-run and in an on-line version.
The HLA compliant Skopeo is based on the Beta-Release of
the Java-RTI 1.0 from DMSO.

Although this RTI release had some intrinsic problems and
never reached production stage (support and development
were terminated after the Beta-Test program), it was
possible to use it for Skopeo. The Skopeo applet itself uses
Corba mechanisms to communicate with its host server.

Figure 5 shows a screenshot of the transportation federation
obtained with Skopeo Animation.

Figure 5: Screenshot of the streetcar federation obtained
with Skopeo Animation

5. Simulation Systems under HLA

There are some general differences regarding the
development of simulations in the military and in the civil
simulation community. In the civil community it is very
rarely usual to develop a simulation in a programming
language like C++ or Java, even though several packages
for supporting the development of simulations in these
languages (e.g. Silk for Java) exist. There are a couple of
reasons for that; the most important one is probably related
to the very comfortable way one can develop simulation
models with sophisticated and specialized simulation tools
(e.g. Arena, Automod, GPSS, Modsim, Pro Model, SLX,
etc).

Another reason is that the typical application areas are
different: one would never think of developing a training
simulator with the tools mentioned above, because this may
prove to be very difficult, if not impossible. For analytical
simulations, the situation might be different, because this is
the actual strength of these tools.

In order to use the tools discussed above, concepts for HLA
interfaces need to developed and implemented. The
University of Magdeburg has developed several concepts
for doing this [7].

Generally, HLA Interfaces for these tools can be classified
by two aspects:

• the interface developer’s point of view, and
• the model developer’s point of view.

The interface developer’s point of view relates to the
question, how and where the actual access to the HLA API
is performed. For this task the following alternatives can be
considered (see [3]):

1. Re-Implementation of the tool with HLA-extensions
2. Extension of intermediate code
3. Usage of an external programming interface
4. Coupling via a gateway program.

The model developer’s point of view relates to the issue,
how the access to the HLA interface from the model looks
like. The two general alternatives which we’ve shown to be
feasible are:

1. Explicit access
2. Implicit access.

In 1) the model has to issue certain functions calls to the
HLA interface actively, i.e. the HLA interface has to be
called from inside the model. Also, the model has to take
care of receiving data or at least, of processing incoming
data.

In 2) the model does not have to be enriched with HLA
functionality. The user only specifies a mapping between
internal data (e.g. variables, object classes, attributes) and
the data of its SOM. The actual access to the HLA interface
is done from the runtime kernel of the simulation tool. This
alternative has the advantage that the model description is
independent from the fact of whether you are developing a
federate or a stand-alone simulation.

6. Conclusions

Our work shows that the simulation community could make
very good use of approaches for composing simulations
from modular, re-usable components. The U.S. DoD’s High
Level Architecture can provide a suitable infrastructure for
constructing simulation federations in this manner. Some
applications in the area of transportation and logistics have
already been developed [8,9,10].

HLA also provides new possibilities for the variable use of
on-line data in simulation models. A certain federate does
not need to know whether the data it receives is actually
obtained on-line from a generating process (using an on-line
federate) or if the data is produced from a playback
federate.

Our future work will consider the possibility of using
geographical information systems (GIS) as information
provider for HLA federates. We intend to dynamically
retrieve the street network from the GIS at runtime of the
simulation.

We are also working on a possibility to clone federates
which are based on commercial simulation tools (e.g. SLX)
internally or externally to the federation. This can be
especially useful for our federation to provide as-fast-as-
possible analyses without interruption a running federation.

7. References

[1] HLA at the University of Magdeburg. The Streetcar
Federation. URL http://isgsim.cs.uni-magdeburg.de/
hla/fed-streetcar.html.

[2] Henriksen, J.O. 1997. An Introduction to SLX . In
Proceedings of the 1997 Winter Simulation
Conference, eds. Andradóttir, S., K. Healy, D. Withers,
and B. Nelson, pp. 559-566, SCS, Atlanta.

[3] Straßburger, S., T. Schulze, U. Klein, J.O. Henriksen.
1998. Internet-based Simulation using off-the-shelf
Simulation Tools and HLA. In Proceedings of the 1998
Winter Simulation Conference, eds. Medeiros, D., E.
Watson, J. Carson, and M. Manivannan, pp. 1669-
1676. SCS, Washington.

[4] Lorenz, P. and K. C. Ritter. 1997. Skopeo: Platform-In-
dependent System Animation for the W3. In Deussen,
O. and P. Lorenz (Eds.), Proceedings of the Simulation
und Animation Conference Magdeburg, March 6-7,
1997. SCS European Publishing House San
Diego/Erlangen/Ghent/Budapest 1997, pp. 12-23.

[5] Henriksen, J.O. 1998. Windows-Based Animation with
Proof . In Proceedings of the 1998 Winter Simulation
Conference, eds. Medeiros, D., E. Watson, J. Carson,
and M. Manivannan, pp. 241-247. SCS, Washington.

[6] Dorwarth, H., P. Lorenz, K. C. Ritter, and T. J.
Schriber. 1997. Towards a Simulation and Animation
Environment for the Web. In Proceedings of the 1997
Winter Simulation Conference, eds. Andradóttir, S., K.
Healy, D. Withers, and B. Nelson, pp. 1338-1344,
SCS, Atlanta.

[7] Straßburger, S. On the HLA-based Coupling of
Simulation Tools. In Proceedings of the 1999
European Simulation Multiconference, ed. H.
Szczerbicka, pp. 45-51 (Vol. 1). SCS, Warsaw, Poland.

[8] Klein, U., T. Schulze, S. Straßburger, and H.-P. Menz-
ler. 1998. Traffic Simulation Based on the High Level
Architecture. In Proceedings of the 1998 Winter

Simulation Conference, eds. Medeiros, D., E. Watson,
J. Carson, and M. Manivannan, pp. 1095-1103. SCS,
Washington.

[9] Klein, U., T. Schulze, S. Straßburger, and H.-P.
Menzler. 1998a. Distributed Traffic Simulation based
on the High Level Architecture. In Proceedings of the
Simulation Interoperability Workshop Fall 1998,
Orlando.

[10]Schumann, M., E. Bluemel, T. Schulze, S. Straßburger,
K.-C. Ritter, Using HLA for Factory Simulation. In:
Proceedings of the Simulation Interoperability
Workshop Fall 1998, Orlando.

Author Biographies

THOMAS SCHULZE is an Associate Professor in the De-
partment of Computer Science at the Otto-von-Guericke-
University in Magdeburg. His research interests include
modeling methodology, public systems modeling, traffic
simulation, and distributed simulation with HLA. He is an
active member in the ASIM, the German organization of
simulation.

STEFFEN STRASSBURGER holds a Master’s degree in
Computer Science from the Otto-von-Guericke University,
Magdeburg. He is currently working towards his PhD
degree at the Institute for Simulation and Graphics at the
same university. His experience with inter-networking and
simulation includes a one-year-stay at the University of
Wisconsin, Stevens Point. His main research interests lie in
distributed simulation and the High Level Architecture.

ULRICH KLEIN is a project manager at the Fraunhofer
Institute for Factory Operation and Automation IFF in
Magdeburg, Germany. He holds a Master’s degree in In-
dustrial Engineering from the University of Karlsruhe and
has been involved in Emergency Management since 1992.
He has a two-years experience as project manager for
Command, Control and Communication Systems for Public
Safety and Security in Europe. His research topics include
Emergency Management, Geographic Information Systems
and distributed simulation-based systems.

