

2001 European Simulation Interoperability
Workshop

University of Westminster, Harrow Campus
June 25-27, 2001

Steffen Strassburger
Institute for Simulation and Graphics

Department of Computer Science
Otto-von-Guericke-University Magdeburg, Germany

strassbu@web.de

1

Creating HLA-Interfaces for
Simulation Systems

Dr. Steffen Straßburger
Institute for Simulation and Graphics

Department of Computer Science
Otto-von-Guericke-University Magdeburg

Email: strassbu@web.de
WWW: http://isgsim1.cs.uni-magdeburg.de/~strassbu

Contents and Structure
IntroductionIntroduction
• Motivation
• History & Future
• HLA Principles
• Functional Overview

HLA Interface
Specification
• Principles
• Service Groups
• Data Types

IF Spec Usage in
Simulation Systems
• C/C++ Wrapping
• Data Type Conversions
• FOM Independence
• Examples: SLX and

Pro ModelPart I

Part III

Part II

What is HLA ?

High Level Architecture for Modeling and
Simulation (HLA):

(1) An architecture for distributed simulation

(2) An architecture to support interoperability
and re-use for different types of programs,
not limited to simulations

2

Motivation: Why HLA ?

� No single monolithic simulation can satisfy
the needs of all users.

� All uses of simulations and useful ways of
combining them cannot be anticipated in
advance.

� Consequence:
• necessity of a modular / composable approach to

constructing simulation federations

� US DoD approach: The High Level
Architecture
• Simulation functionality separated from general

purpose interoperability support infrastructure

HLA: History and Future
� DoD Modeling & Simulation Master Plan

1995:
„Establish a common high-level simulation
architecture to facilitate the interoperability
of all types of models and simulations
....,as well as to facilitate the reuse of M&S
components”

� Combines predecessor technologies (DIS,
ALSP)

� HLA has passed IEEE standardization and is
the future standard architecture for all DoD
simulations

Principles of the HLA approach (1)

� Interoperability
• Simulations must be able to exchange data and

meaningful interpret them
� Reusability

• Simulations must have well-defined and well-
documented interfaces and objects

� Federations of Simulations
• Different simulations (federates) together form a

federation (federation execution)

3

Principles of the HLA approach (2)

� Differentiation between simulation
functionality and basic services
• All basic services (data exchange,

communication) are to be provided by a Runtime
Infrastructure (RTI) which interfaces with the
simulations in a well-defined way

� Object view on simulations
• All modeled entities are considered “Objects”

• Attributes for modeling their characteristic and condition
• Interactions for modeling communication between

objects
• No restriction on implementation inside simulations

Functional Overview of HLA

Live
Players

Interface

Interface to
Live Players

Runtime Infrastructure
Federation Management Declaration Management
Object Management Ownership Management
Time Management Data Distribution Management

Support
Utilities Simulations

Data collectorsData collectors
Passive ViewersPassive Viewers
Command and Control ComponentsCommand and Control Components
......

HLA - the key defining elements

� HLA Rules
• define the cooperation of simulations

� HLA Object Model Template
• defines an object view on the simulations

� HLA Interface Specification
• Application Programming Interface that all

simulations have to comply with
• All communication between simulations is only

allowed via this interface

4

HLA - Glossary

� Federate:
• A member of an HLA Federation

� Federation:
• A named set of interacting federates, a common

federation object model, and a supporting Runtime
Infrastructure

� Federation Execution:
• Represents the actual operation, over time, of a

subset of the federates and the RTI. It is the step
where the executable code is run to conduct the
exercise / distributed simulation.

HLA Object Models - Overview

� Object Models describe:
• The set of object attributes chosen to represent the real

world for a specific simulation / federation
• The attributes, associations, and interactions of these

objects
• The level of detail at which these objects represent the real

world, including spatial and temporal resolution
� HLA provides templates to characterize the object

models
• Object Model Template (OMT) specification

The HLA Object Model Template

� Object Model Template (OMT) consists of

• Object Class Structure Table
• Lists the (static) object description of a federate / federation
• Supports hierarchical class structures (subclass-superclass

relations)

• Interaction Class Structure Table
• Describes the “dynamics” between objects, depicts all possible

types of interactions between objects, incl. affected attributes

• Attribute / Parameter Table
• Complex Data Type Table
• FOM / SOM Lexicon
• Routing Space Table

5

HLA Definition: The FOM and
SOM’s
� Simulation Object Model (SOM)

• describes a federate’s modeling capabilities/characteristics
in terms of object classes, interactions, attributes,
parameters, ownership transfer capabilities, etc.

• follows the guidelines established in the OMT-description

� Federation Object Model (FOM)
• Contract among “n” simulations to satisfy the objectives of a

specific federation
• FOM content gives a description of all shared information

Contents and Structure
Introduction
• Motivation
• History & Future
• HLA Principles
• Functional Overview

HLA Interface HLA Interface
SpecificationSpecification
• Principles
• Service Groups
• Data Types

IF Spec Usage in
Simulation Systems
• C/C++ Wrapping
• Data Type Conversions
• FOM Independence
• Examples: SLX and

Pro ModelPart I

Part III

Part II

The HLA Interface Specification

� Definition of the interface services between
the Runtime Infrastructure and the
simulations
• 6 service groups

� API’s (Application Programming Interfaces)
for different language bindings following the
general Interface Specification
• C++
• Java
• ADA95
• CORBA IDL

6

The RTI-Federate
Communication
� Communication through ambassadors objects

� RTI-Ambassador for calls from the federate to the RTI
• provided in a library that has to be linked to the federate

� Federate Ambassador for RTI calls to the federate
• To be implemented by the federate (C++: abstract object class)

Data Flow
to the

Federate

Data Flow
to the RTI

Federate

RTI Software

RTI Ambassador
Federate Ambassador

Process Models and Threading
Techniques (1)

� Callback handling plays important role
• A federate calls methods of the RTI ambassador
• Callbacks from the RTI to the federate

ambassador must be triggered by calling a special
method called tick()

• Most RTI ambassador methods are not re-entrant,
i.e., you cannot call an RTI ambassador method
while processing a federate ambassador callback

• Two versions of tick()
• Usage depends on the requirements of the federate
• Return values indicates if more callbacks are pending

Two versions of Tick()*

Boolean tick ()
throw (

SpecifiedSaveLabelDoesNotExist,
ConcurrentAccessAttempted,
RTIinternalError);

Boolean tick (
TickTime minimum,
TickTime maximum)

throw (
SpecifiedSaveLabelDoesNotExist,
ConcurrentAccessAttempted,
RTIinternalError);

* from C++
IF Specification

7

Process Models and Threading
Techniques (2)
� In earlier RTI versions tick() was also used to provide

computing time for RTI internal tasks (e.g., RTI 1.3r7,
RTI 1.0.3)

� Latest RTI 1.3 NG provides two process models
• Asynchronous process model:

• Tick needs only to be called, when the federate is ready to
receive callbacks

• RTI uses additional thread(s) to do computing and
communication asynchronously

• Polling process model
• Tick needs to be called in regular intervals to provide

computing time to the RTI, no additional threads

The IF-Specification: Service
Groups

� Federation Management
� Declaration Management
� Object Management
� Data Distribution Management
� Time Management
� Ownership Management

IF-Specification:
Federation Management
� Purpose: Coordination of federation-wide activities

during a federation execution
• Used by federates to manage a federation execution
• Initialization of the RTI using the federation execution data for

initializing name spaces, transport and ordering mechanisms,
routing spaces and dimensions

� Interface services include:
• Creation and destruction of federation executions
• Joining and resigning of federates
• Services to save/resume and synchronize federation

executions

Federation M.Federation M. Data Distribution M.
Declaration M. Time Management
Object Management Ownership M.

8

IF-Specification:
Declaration Management

� Purpose: Specification of data types that a
federate wants to send / receive
• Specification of object / interaction classes and

attributes / parameters as stated in the FOM

� RTI Services:
• Publish Object Class / Interaction Class
• Subscribe Object Class Attributes / Interaction

Class
• Unpublish Object Class /Interaction Class
• Unsubscribe Object Class / Interaction Class
• (Enable/disable Class Relevance Advisory Switch)

Federation M. Data Distribution M.
Declaration M.Declaration M. Time Management
Object Management Ownership M.

Interface

Runtime Infrastructure
Federation Management Declaration ManagementDeclaration Management
Object Management Ownership Management
Time Management Data Distribution Management

Federate A
intends to generate

data and receive
interactions

Federate B
is interested in the

data modeled by “A”
and may send

interactions

- Subscribe Object Class Attributes
- Publish Interaction Class

- Publish Object Class
- Subscribe Interaction Class

IF-Specification:
Declaration Management

Federation M. Data Distribution M.
Declaration M.Declaration M. Time Management
Object Management Ownership M.

� Purpose: Create, modify, and delete object
instances
• Applies to objects, attributes, and interactions

� RTI services include
• Register Object Instance/ Discover Object Instance

• Includes handle conversion services like
GetObjectClassHandle, GetInteractionClassHandle

• Update / Reflect Attribute Values
• Send / Receive Interaction
• Delete Object Instance
• Change Transport and Ordering Mechanisms

IF-Specification:
Object Management

Federation M. Data Distribution M.
Declaration M. Time Management
Object ManagementObject Management Ownership M.

9

� Ordering types for messages (attribute
updates, interactions)
• receive order (RO)
• time stamp order (TSO)

� Transportation types (differ in terms of
reliability)
• reliable
• best effort

IF-Specification:
Object Management

Federation M. Data Distribution M.
Declaration M. Time Management
Object ManagementObject Management Ownership M.

Interface

Runtime Infrastructure
Federation Management Declaration Management
Object ManagementObject Management Ownership Management
Time Management Data Distribution Management

Federate A
has published an object

class and intends to
start modeling an

instance

Federate B
has subscribed to the
object class modeled

by federate “B”

1. Register object
instance

2. Update attribute
values

3. Discover object
instance �

4. Reflect Attribute
Values �

IF-Specification:
Object Management

Federation M. Data Distribution M.
Declaration M. Time Management
Object ManagementObject Management Ownership M.

� Purpose: Reduce the network traffic
� Basic Concept: Routing Spaces

• Multi-dimensional coordinate system
• Federates can specify regions

• into which they want to send data (Update Region)
• from which they want to receive data (Subscription

Region)
• Data will only be transferred if Update/Subscription

Regions overlap

� Federates don’t have to use DDM
• Care must be taken when mixing DDM and DM

federates

IF-Specification: Data
Distribution Management

Federation M. Data Distribution M.Data Distribution M.
Declaration M. Time Management
Object Management Ownership M.

10

Two-dimensional Routing Space

Update Region

Subscription Region

Overlapping Region

- attributes and interactions will
be sent to the subscribing
federate

Update Region 1

Subscription
Region 1

Subscription
Region 2

IF-Specification: Data
Distribution Management

Federation M. Data Distribution M.Data Distribution M.
Declaration M. Time Management
Object Management Ownership M.

� General approaches in distributed simulation:
• conservative synchronization (with lookahead)
• optimistic synchronization (e.g. time warp)
• hybrid methods
• time-stepped
• real-time driven
• (no coordination necessary)

� HLA claims to support all mechanisms by
providing a transparent time management
• local time management of federates is invisible to

the outside

IF-Specification:
Time Management

Federation M. Data Distribution M.
Declaration M. Time ManagementTime Management
Object Management Ownership M.

� Federates have to request their local time
advancement
• Next Event Request & Time Advance Request

• federate indicates that it will not generate new messages
prior to the requested time advance (if it doesn’t receive
new messages)

• RTI issues “Time Advance Grant”
• once a time advance grant has been issued, no

messages with a smaller time stamp are allowed to be
sent

� RTI coordinates time advances under
consideration of:
• ordering mechanisms for attributes / interactions
• requirements/properties of the federates

IF-Specification:
Time Management

Federation M. Data Distribution M.
Declaration M. Time ManagementTime Management
Object Management Ownership M.

11

Strictly time synchronized:
conservative (ALSP),

aggressive (Time Warp)

unconstrained (DIS)
cooperation with conservative

federates

Viewer / Federation
Management Tool:
stays synchronized,

but does not generate events

Externally synchronized
Simulation: no RTI-based

Time Management
(DIS)

Time-Regulating
true false

Ti
m

e-
C

on
st

ra
in

ed tru
e

fa
ls

e

� Two Switches determine the basic time management
characteristics of a federate

IF-Specification:
Time Management

Federation M. Data Distribution M.
Declaration M. Time ManagementTime Management
Object Management Ownership M.

while (simulation still in progress) {
Determine timestamp of next local event, let TS_local be this timestamp
/* next statement enables delivery of next external message */
invoke Next Event Request (TS_local) service
honor zero or more RTI requests for Reflect Attribute Value and Receive

Interaction services
honor RTI service request for Time Advance Grant
if (no TimeStampOrdered messages received in above RTI service requests)
{

now = TS_local
process the next local event identified above
}

else {
now = timestamp of TimeStampOrdered message
process message;
}

provide any changed information (new attribute values or interactions)
to the RTI via the Update Attribute and/or Send Interaction services.

}

IF-Specification: Time
Management Example

Federation M. Data Distribution M.
Declaration M. Time ManagementTime Management
Object Management Ownership M.

• Can the RTI deliver the messages in the queue to Simulation A ?
• RTI offers a mechanism to ensure the time stamp order (no

events in the past (with a lower time stamp than previously
delivered events) will be delivered

Simulation B
Local time=110

Simulation C
Local time=90

Simulation A

RTI
ts=100
ts=80Queue

last delivered message
had time stamp 50

IF-Specification:
Time Management

Federation M. Data Distribution M.
Declaration M. Time ManagementTime Management
Object Management Ownership M.

12

� Dealing with optimistic federates
• Event Retraction Handles

• Returned by Update Attribute Values and Send Interaction
services

• Can be used to send “anti-messages” to cancel the
event/message

• Optimistic federates can exchange optimistic messages
• Have to request “optimistic” delivery of messages to them
• RTI service “Flush Queue Request”

� RTI prevents conservative federates from receiving
optimistic messages

• Only optimistic federates need to know how to “rollback”

IF-Specification:
Time Management

Federation M. Data Distribution M.
Declaration M. Time ManagementTime Management
Object Management Ownership M.

� HLA Time Management does not define a
generally valid federation time
• “The federation time is X” is not an valid statement
• “The federation time is X from the point of view of

federate Y” is a valid statement

� “Lower Bound Time Stamp” of a federation:
• Minimum time stamp such that it can be

guaranteed that no federate will generate any
time-stamp-ordered events with a lower time
stamp

IF-Specification:
Time Management

Federation M. Data Distribution M.
Declaration M. Time ManagementTime Management
Object Management Ownership M.

� “Lower Bound Time Stamp” of a federate:
• if federate is time regulating: its current logical time +

lookahead
• if its non-time-regulating: positive infinity

� Query LBTS
• Delivers current federation LBTS, i.e. the minimum of all

LBTS’s of all participating federates
� Query Min Next Event Time

• Minimum of all time-stamp ordered events that may be
subsequently delivered to the federate

• Takes into account messages which are still queued for
delivery

IF-Specification:
Time Management

Federation M. Data Distribution M.
Declaration M. Time ManagementTime Management
Object Management Ownership M.

13

� Enables federates to transfer the ownership of object
attributes

• Ownership transfer based on federation execution design
• Both push and pull mechanisms supported

� RTI services include:
• Negotiated Attribute Ownership Divestiture / Attribute

Ownership Acquisition
• Federate wants to “get rid” of an attribute (push)

• Attribute Ownership Acquisition / Attribute Ownership
Release Response

• Federate wants to become owner of an attribute (pull)

� Major design flaw: services are NOT time managed

IF-Specification:
Ownership Management

Federation M. Data Distribution M.
Declaration M. Time Management
Object Management Ownership M.Ownership M.

Interface

Runtime Infrastructure
Federation Management Declaration Management
Object Management Ownership ManagementOwnership Management
Time Management Data Distribution Management

Federate A
wants to hand over
ownership of object

attribute(s)

Federate B
wants to adopt

ownership of object
attribute(s)

1. Negotiated Attribute
Ownership Divestiture

4.Attribute Ownership
Divestiture Notific.�

2. Req. Attr. Ownership
Assumption�

3. Attr. Own.ship Acqu.
4. Attr. Ownership

Acquisition Notif. �

IF-Specification:
Ownership Management

Federation M. Data Distribution M.
Declaration M. Time Management
Object Management Ownership M.Ownership M.

Federate A
wants to become the

owner of certain
attribute(s)

Federate B
is willing to release
ownership of certain

attribute

1. Attribute Ownership
Acquisition

4. Attribute Ownership
Acquisition Notification �

2. Request Attribute
Ownership Release �

3. Attribute Ownership
Release Response

IF-Specification:
Ownership Management

Federation M. Data Distribution M.
Declaration M. Time Management
Object Management Ownership M.Ownership M.

Runtime Infrastructure
Federation Management Declaration Management
Object Management Ownership ManagementOwnership Management
Time Management Data Distribution Management

14

Contents and Structure
Introduction
• Motivation
• History & Future
• HLA Principles
• Functional Overview

HLA Interface
Specification
• Principles
• Service Groups
• Data Types

IF Spec Usage in IF Spec Usage in
Simulation SystemsSimulation Systems
• C/C++ Wrapping
• Data Type Conversions
• FOM Independence
• Examples: SLX and

Pro Model
Part I

Part III

Part II

Motivation: Interoperability between simulation
systems in civilian simulation domains is required

� A component-based approach for building complex
simulation models with heterogeneous simulation
systems is missing

• Composition of complex models by combining submodels
developed with best-suited simulation system desirable

• Re-use of existing models by re-combining them
• Distributed simulation: Combination of physically distributed

models should be possible

� A Plug-and-Play standard for building (distributed) simulation
models is missing, but HLA could become this standard.

Motivation: Interoperability with non-simulation
components is required

� Simulation projects in practice often have a need to
connect simulation systems to other components like

• Geographical Information Systems (GIS)
• Command and Control Systems
• External Visualization Applications
• On-line Data Sources

� Several proprietary solutions for achieving
interoperability exist

• Uncomfortable to use (e.g., socket interfaces)
• Shortcuts regarding synchronization mechanisms
• No standardization of interfaces and data

15

Starting Point: Usage of HLA from commercial
simulation systems desirable

� Many off-the-shelf simulation systems exist
• Discrete-Event Simulation Packages: GPSS/H, SLX, Simplex,

MODSIM
• Component based simulation systems: Pro Model, eM-Plant

(Simple++), Arena, Automod

� HLA interfaces for these tools desirable, but usually not
implemented by developers

� Same situation for legacy simulations

Common Problems: Which Interfaces are
available?

� How to access HLA functionality from these
systems?
• Access to source code of simulation system?
• Programming Interfaces (Library Interfaces,

Dynamic Data Exchange, Sockets …)
• Exchange of data between systems (Mapping of

data types, accessibility of data structures)
• Synchronization of simulation clocks (Access to the

time stamp of future events, suspension of time
advancement, inclusion of external events)

Solution in many cases: C/C++-
Wrapping Techniques

� Library interfaces often limited to C-function
calls
• No accessibility of C++ objects and methods
• To call a specific method, the method has to be

wrapped by a standard C function
• C++ exception handling has to occur inside the C

function
• Exceptions can be reflected to the simulation

system via the return codes

16

Sample Solution for SLX (1)

� SLX is a layered modeling system for discrete
event simulation with powerful extensibility
mechanisms
• Statements concept
• DLL interface

� Available for Windows 95/98/NT
� C-like syntax with selected concepts for

object-oriented programming
� Developed by Wolverine Software

� Cannot define callback functions inside the
SLX model

� Cannot call C++ methods directly
� Data-Types differ between SLX and standard

C/C++
� Excellent simulation environment
� Can generate .H files
� Run-Time symbol table interrogation

Sample Solution for SLX (2)

Runtime Infrastructure (RTI)

RTI Ambassador

Wrapper
C / C++

RTI Library
C++

SLX-Model

Simulation ObjectsSimulation Objects
......

SLX_SLX_StateObjectStateObject

Function CallsFunction Calls

Federate Ambassador

Tables

Wrapper-
Functions

17

Wrapper Function Examples (RTI1.0)Wrapper Function Examples (RTI1.0)

� Declaration in SLX
procedure RTI_RequestPause(string(*) PauseLabel)
returning boolean dll="slxrti10";

� Corresponding C-Function
 int RTI_RequestPause(struct string_header* SLX_PauseLabel)

{
try {

rtiAmb->requestPause(SLX_PauseLabel->string_address);
}
catch (RTI::Exception& e)
{

return FALSE;
}
return TRUE;

}

NextEvent-
Request
(RTI1.0)

//Global Variables
bool timeAdvGrant;
double grantTime;

double RTI_NextEventRequest (double NextEventTime)
{

try
{

timeAdvGrant = RTI::RTI_FALSE;
ms_rtiAmb->nextEventRequest(NextEventTime);

}
catch (RTI::Exception& e)
{

return (-1); //simplified
}
while (timeAdvGrant == RTI::RTI_FALSE)
{

int eventsToProcess = 1;
while (eventsToProcess)
{

eventsToProcess = ms_rtiAmb->tick();
}

}
return (grantTime);

}

Request Time
Advancement

Wait for Time
Advance Grant

Data Type Conversion between simulation
system and RTI often necessary

� Representation of simulation time: most tools use
double values, RTI uses a separate class
class RTI_EXPORT_FEDTIME RTIfedTime :

public RTI::FedTime {
// Constructors and Destructors
public: RTIfedTime();

RTIfedTime(const RTI::Double&);
RTIfedTime(const RTI::FedTime&);
...
virtual ~RTIfedTime();

// Implementation functions
public: virtual RTI::Double getTime() const;

...

18

NextEvent-
Request
(RTI1.3)

//Global Variables
bool timeAdvGrant;
RTIfedTime grantTime;

double RTI_NextEventRequest (double NextEventTime)
{

try
{

timeAdvGrant = RTI::RTI_FALSE;
ms_rtiAmb->nextEventRequest(

(RTIfedTime (NextEventTime));
}
catch (RTI::Exception& e)
{

return (-1); //simplified
}
while (timeAdvGrant == RTI::RTI_FALSE)
{

int eventsToProcess = 1;
while (eventsToProcess)
{

eventsToProcess = ms_rtiAmb->tick();
}

}
return ((double) grantTime.getTime());

}

Build instance
of Time Class
from double value

Fetch double
value from class

Transfer of data over system
boundaries

� Simulation systems differ in their capabilities
to access/modify internal data objects
• SLX

• Pointers to internal data objects can be passed via the
library interface

• External modifications of data objects can be reflected as
events into the simulation

• Pro Model
• No access to data objects via the library interface

(XSUB)
• Data can only be received via the return value of an

external function, data type is limited to double

Transfer of data over system
boundaries – Example (1)

� Function of the SLX-HLA-IF
• Registers an object with the RTI
• Passes a pointer to the wrapper library which

points to the actual SLX object
• Returns a unique ID under which the object is

known by the RTI and the wrapper

� procedure RTI_RegisterObjectInstance(
string(*) ObjectClassName,
pointer(*) theObject)

returning int dll="slxrti13";

19

Transfer of data over system
boundaries – Example (2)

� Function of the SLX-HLA-IF
• Sends an update for the previously registered object
• No attribute data is passed via the DLL interface !!!
• Wrapper stores pointer passed in RTI_Register-

Object and uses it to access attribute data directly

� procedure RTI_UpdateAttributeValues(
int Object_ID,
string(*) AttributeList,
double TimeStamp)

returning int dll="slxrti13ng";

Mapping of data types to a
specific FOM

� Simulation systems often define their own
data types and with proprietary
implementations
• SLX

• “double”, “float”: always 64 Bits
• Only one “integer” type (no short/long etc.)
• Special implementation of “string”

� Conversions to and from the data types
mandates by a specific FOM are necessary

FOM-Independence/FOM-Agility

� Ability of software to adapt to different FOMs by
defining mappings

• A mapping at runtime between a general FOM class
“TRUCK” and specific subtypes of TRUCK modeled by the
simulation

� Ability of software to convert units of data
• E.g., conversion of Kilometers to Miles

� Implementation of software which is independent
from any FOM, e.g., for implementing general HLA
interfaces for simulation systems

• SLX-HLA-Interface has no knowledge at compile time about
FOM contents

• At runtime, the SLX model provides the required information

20

The Synchronization Issue (1)

� Simulation clocks typically need to be synchronized
with other participants

� Most commonly, conservative synchronization will be
appropriate

• Easiest to implement
• Tools are not capable to rollback/recover

� Event based conservative synchronization requires
access to time stamp of next scheduled event

� Alternately time stepped conservative
synchronization can be used

The Synchronization Issue (2)

� Add a special synchronization thread to the
simulation model

� Acts as last event at a specific simulation time
� Determines time stamp of next scheduled

event
� Requests the time advancement
� Receives zero or more external events
� Advances simulation time to time granted

SLX-Synchronization ThreadSLX-Synchronization Thread
double grantTime; // stores the time returned from RTI
double nextEventTime; // stores the time stamp of the next event

forever
{

nextEventTime = next_imminent_time(); // determine time stamp of next
// internal event

grantTime = RTI_NextEventRequest(nextEventTime);
//request advancement

wait until (time == grantTime); // advance to grant time

RTI_ReflectControlVariableChanges(); // Let external events take effect

... // query and process any external events

yield; // hand over control to other simulation
threads

}

21

Pro Model - Synchronization
Thread
Pro Model - Synchronization
Thread
//Request advancement to next time step

GrantTime = XSUB(ProModel_RTI13,
"RTI_TimeAdvanceRequest",
(CLOCK(sec)+1))

//Query for any attribute changes or received interactions

...

// Wait for the time step to elapse, then start from top

WAIT GrantTime - CLOCK(sec)

Summary

� HLA offers a solution for interoperability for
general simulation systems
• Interoperability between platforms, languages and

time advancement mechanisms
� Initial effort for constructing a general HLA

interface for a simulation system

Summary

� For many systems, an adopted HLA API is
necessary
• C/C++ wrapping often needed
• Simplifications of the HLA API can be

implemented along the way
• Data type conversions

� Simulation system specific HLA interfaces
can be implemented independent from FOMs

	June 25-27, 2001

		2001-07-03T15:29:02+0100
	Magdeburg
	Steffen Strassburger
	I am the author of this document

