
On the Use of the Core Manufacturing Simulation Data (CMSD) Standard:

Experiences and Recommendations

Soeren Bergmann, Steffen Strassburger

Department for Industrial Information Systems

Ilmenau University of Technology

Helmholtzplatz 3

98693 Ilmenau, GERMANY

{soeren.bergmann, steffen.strassburger} @tu-ilmenau.de

Keywords:

Core Manufacturing Simulation Data, Automatic Simulation Model Generation

ABSTRACT: The Core Manufacturing Simulation Data (CMSD) information model is defined by SISO standards

SISO-STD-008-01-2012 and SISO-STD-008-2010. The main objective of CMSD is to facilitate interoperability

between simulation systems and other information systems in the manufacturing domain. While CMSD is mainly

intended as standardized data exchange format, its capabilities go beyond simple data exchange. Frequently CMSD

based system descriptions are used for purposes of automatic simulation model generation. In this paper, we report

on practical experiences using the CMSD standard for such purposes as well as for purposes of simulation model

initialization and simulation output data collection. Based on our experiences we suggest potential enhancements for

a future revision of the standard.

1. Introduction

In production and logistics, the application of commercial-

off-the-shelf simulation packages (CSPs) based on

discrete event simulation paradigms is commonplace.

Simulation is used for planning new systems (e.g., for the

prediction of system behavior) as well as for operational

decision support in existing systems (e.g., for the

evaluation of control alternatives).

Both application areas may require a close integration of

existing information systems from the production and

logistics context and CSPs. Information systems of

interest include enterprise resource planning (ERP),

manufacturing execution systems (MES), and production

planning applications.

Scenarios requiring a close integration include the

automatic simulation model generation as well as

simulation model initialization.

In this article, we summarize our experiences (previously

reported in [1–5]) with the usage the Core Manufacturing

Simulation Data (CMSD) standard. We report about

lessons learnt and suggest potential enhancements for a

future revision of the standard.

The remainder of this article is structured as follows.

Section 2 briefly introduces essential ideas of CMSD.

Section 3 outlines our use of CMSD-based simulation

model generation. Section 4 discusses CMSD-based

simulation model initialization. Section 5 reports on the

usage of CMSD for capturing simulation result data.

Section 6 discusses lessons learnt and makes

recommendations for future revisions of the standard.

2. Core Manufacturing Simulation Data

The CMSD information model is an open standard

developed within the simulation interoperability standards

organization (SISO). The primary objective of the CMSD

information model is to facilitate interoperability between

simulation systems and other information systems used in

manufacturing. Towards this objective CMSD provides a

data specification for the efficient exchange of

manufacturing data in a simulation environment.

The CMSD standard consists of two parts. The first part

uses the Unified Modeling Language (UML)

representation [14]. The UML representation has been

organized using packages shown in Figure 1.

Layout
Part

Information
Support

Resource

Information

Production

Operations

Production

Planning

Basic

Types

Basic

Structures

Conceptual

Framework

Document

Definition

Entity

Reference
Definition

Metadata

CMSD

Figure 1: Packages of the CMSD Information Model

[14]

The second part implements the data format in an XML

schema description and is based on RelaxNG and

Schematron as schema languages [15].

The CMSD standard provides data structures and an

information model for the exchange of modeling

information and includes classes describing jobs, parts,

resources including machines and workers, process plans,

shifts, etc. as well as basic layout information.

CMSDs capabilities were tested and documented in

several research projects and publications [6, 7, 11, 13].

Our own work has demonstrated that CMSD is useful for

the model generation [1], initialization [3], and facilitating

web-based simulation usage scenarios [4]. We have

investigated CMSD-based automatic model generation for

both component-based simulation tools, such as Plant

Simulation [1] as well as for simulation languages such as

SLX [5].

3. CMSD-based simulation model generation

Different categories of input data are needed for creating

simulation models of production systems. The VDI (The

Association of German Engineers) classifies relevant input

data into three clusters: technical, organizational, and

system load data as shown in Figure 2.

technical data

system load data organizational data

factory structure production data material flow data disturbance data
facility topology
(layout, transport
infrastructure, areas, …)

production time,
performance data,
capacity

topology of material
flow system, carriers,
performance data,
capacity, economic lifetime

functional disturbance,
availability

job dispatching

order/job (transfer,
transform, main
tenance activity),
lot size, termination

-

product data

bill of material,
Work plan

shift model

shift model,
breaks

resource
allocation

machine,
worker,
conveyor

operations
structuring

strategy, restriction,
exception
management

Input Data
for

Simulation

Figure 2: Input data for simulation models

The class of the technical data describes the topology and

layout of the entire system as well as the properties of

single system components. The organizational data

specifies the operation structuring and process

organization, especially working shifts models, strategies

and resource allocations. Finally, the class system load

data describes jobs and their properties.

While technical data and organizational data are mostly

relevant for data-driven model generation approaches, the

system load data focuses on the data primarily relevant for

model initialization.

Although CMSD offers support for all suggested input

data categories, there are sometimes multiple ways of

mapping required input data to elements of the CMSD

standard. This is sometimes due to missing exact matches

of classes (e.g. buffers) or due to desired (but missing)

properties of a certain class (e.g., capacities of resources).

With that, some degree of freedom for interpretation of

the CMSD standard exists. For the use of CMSD in

various model generators, a common interpretation of the

CMSD standard may therefore be needed. We here report

on our usage (and as such – our interpretation) of the

CMSD standard.

For model generation purposes, we have most

significantly relied on the resource class which stores

information about machines and employees, the calendar

class for storing shift and break information, and the

process plan class which stores detailed information about

the manufacturing steps that are required for different part

or job types.

We further define setup conditions of machines and other

resources using the SetupDefinition class and setup times

using the SetupChangeoverDefinition class.

For modelling production demand, we have used the job

class from the productions operation package. CSMD also

offers other ways to model production demand, e.g., by

using the order class, but for simplicity we have chosen to

model concrete jobs.

A job contains a reference to its process plan, a release

date as well as a due date and therefore carries all

information required to unambiguously simulate its flow

through the production.

The decision about which CMSD class to use for which

purpose somewhat depends on the specific needs and

capabilities of the systems to be connected. A collection

of best practices might be useful for future assistance in

these cases.

Our usage of CMSD, for example, is focused on job-shop

production systems. We therefore rely on process plans to

describe in detail all process steps, their required

machines (RessourcesRequired attribute) with their setup

state (AllowableSetup attribute) and also the required

employee skills (RequiredEmployeeSkill attribute) for a

process step.

On the other hand, we abstain from using the connection

class, except for modeling the connections between input

and output buffers and a machine. A flow-shop oriented

production system on the other hand might be better off

using connections to describe the flow of products instead

of detailed process plans for each product.

Regarding employee skill descriptions we rely on CMSDs

capabilities to describe skills using the SkillDefinition

class including skill level descriptions. We further apply a

skill centric approach of describing which worker is

required for a job.

While it is possible to describe the singular worker

requirement of a single process step with that approach

(using a reference to RequiredEmployeeSkill), we found

CMSD to lack built-in capabilities for modeling a more

detailed distinction between skills potentially required

within a process step.

Consider a scenario where different skills are required for

the actual work of a process step, the skills required for

setting up a resource for that process step, and the skills

required for repairing a resource. For modeling such fine

granular skill descriptions, we had to improvise. In our

solution, skills for the actual process step are modeled in

the process step, a potentially different skill for the setup

is added to the setup class using a user defined property,

and a potentially special repair skill was added to the

resource class. While this is all possible using CMSDs

extension mechanisms of “properties”, it obviously

requires a specific interpretation of the semantics of the

newly introduces properties.

We encountered comparable issues when trying to model

disturbance reaction behavior, e.g., in case of machine

breakdowns. This required the introducing of the

properties “MTTR” (mean time to repair) and

“availability” to the resource class. Another addition was

required for describing waste levels. We therefore added a

property “reliability” to the resource class.

For our application scenarios, another problem was

encountered by CMSD’s lack of a buffer class. For

queuing systems, buffers and their capacity are essential

performance factors. We therefore had to model buffers

using the ResourceType “other”. In addition, we had to

add a “capacity” property describing a buffers capacity.

Another important requirement essential for (but not

limited to) job shop scenarios is the description of

decision rules (e.g., sequencing rules, routing rules).

Sequencing rules, for instance, are required for

determining which job is to be processed next at a certain

machine. Such decision rules again had to be modeled by

introducing user defined properties (see section 5).

Based on our experience with the CMSD standard, we

think that some of the extensions we had to introduce

should be considered as core components of the CMSD

standard (and therefore be included in a future revision of

the CMSD standard), other extensions and interpretations

could rather be clarified in the form of a collection of best

practices (e.g., in the form of a SISO guidance product).

Detailed recommendations are given in section 5.

Based on our interpretation of the CMSD standard, we

have investigated different approaches for implementing

simulation model generators. First off, a generic

implementation of the chosen CMSD classes in the

targeted simulators had to be created.

We created such generic implementation for Plant

Simulation (a component based simulation system from

Siemens PLM Software) and for SLX (a simulation

language developed by Wolverine Software [10]).

The actual generation of the simulation models based on a

CMSD XML representation can then be performed using

different approaches. We distinguish between internal and

external approaches.

Internal approaches use algorithms/scripts executed from

within the simulator to read and interpret the CMSD XML

description and to create the required model elements

(resource, jobs, etc.). A prerequisite for this approach are

appropriate interfaces for accessing XML files as well as

appropriate mechanisms for script-driven creation of

model elements.

In previous work we have demonstrated the feasibility of

this approach for Plant Simulation focusing on typical job

shop scenarios ([1] and Figure 3).

Figure 3: CMSD-based Model Generator for Plant

Simulation

External approaches for simulation model generation

include approaches where the actual source code of the

simulation model is created externally from the simulator

based on the CMSD XML description of the system. As a

proof-of-concept, we have demonstrated the use of XML

Stylesheet Transformations for creating simulator source

code for the SLX [5].

The work of other authors for model generators includes

simulation systems such as QUEST, Arena, Pro Model,

and Flexsim [7].

While all this work is very positive and emphasizes the

importance of CMSD, one should also note that the use of

CMSD is mostly unidirectional, i.e., from some set of data

sources towards the simulation (for small exceptions – see

section 4).

There is virtually no work on saving simulation models

manually created in a simulation system into the CMSD

format and then re-creating an equivalent simulation

model automatically in a different simulator.

If at all possible, such a use of CSMD would have to be

bound to

a) strict (and limiting) modelling instructions in the

simulator,

b) a common interpretation of the use of CMSD

elements.

In general, it can be expected that the dazzling diversity of

modeling options in the chosen simulators, especially

concerning dynamic model behavior, will prevent a

complete and unambiguous mapping onto the CMSD

standard.

Being so, CMSD still makes an important contribution for

fostering interoperability between simulation systems and

other IT systems in manufacturing, but it is certainly not a

generic simulation model exchange format (which it also

never intended to be).

3. CMSD-based model initialization

Depending on its intended use, a defined initialization of a

simulation model may be a crucial requirement. Especially

when used as operational decision support tool, the

initialization of the simulation model must be performed

in such a way that the model's internal control structures

(event lists, random number generators, simulation clock,

component states, etc.) reflect the current state of a real

system with sufficient accuracy for forecasting purposes.

For initialization purposes, especially the system load data

(see Figure 2) and the state of all resources is of interest.

Table 1 summarizes the most important data categories for

initialization.

Table 1: Categories of initialization data

Data about Example characteristics

Resources Machine

status

Idle, working, setup, paused,

failed…

Worker Place, working, paused, …

Conveyor Idle, working, paused, failed,

speed, type, number

Job Process step, state, scrap

percentage, type …

Part Place, state

System time

Data on the states of resources shall be discussed first.

Concerning machines, the active setup of the machine and

its current working state are particularly important.

Fundamentally, we can distinguish six main working

states of a machine: idle, busy, setup, broken/failed,

paused, and under maintenance. The information which

specific job currently occupies the machine is only of

secondary interest, as this can typically be modeled as a

property of the job.

While machines are typically immobile, we have to

distinguish other resources like workers and conveyors,

for which the current location can also be of relevance.

Workers have partially other relevant states as other

resources. Similar to the machines they have an attribute

“working state”, but it can have other values. While “in

movement” is a valid status for a worker, “failed” is not.

Furthermore, workers are usually mobile resources, so

they have a current location (often at a machine). When

“in movement” they should have a destination and an

arrival time.

Conveyor is a class of resource which can have quite

heterogeneous properties depending on the type of

conveyor. Depending on the level of detail in the

simulation model, in the simplest case it can be treated

like a machine. Other parameters, such as current speed,

acceleration, type, location, and number of carriers can be

important if they are represented in the simulation model.

The central element for initialization of simulation models

are the jobs in the system, as they represent the dynamic

objects of the physical system. Without their accurate

reproduction in the model, we cannot use it as a tool for

operational decision support. The basic requirement for

initializing a job appropriately is to know its current

process step and its processing status. It also has to have

knowledge about its process plan, e.g., its machine order.

From these two facts crucial information for the

simulation can be derived: If a job is at a certain process

step (say 7) and has a certain state (say blocked) we can

derive that it is located in a buffer in front of machine 7.

Similarly, if its state is “started” we can derive that it is

being processed at a certain machine.

Table 2: CMSD classes used for initialization and

relevant attributes (excerpt from [3]).

Data CMSD Class Relevant Attributes
Machine

state

Resource

(type = machine

or station)

CurrentStatus:

ResourceStatus

AssociatedResource:

ResourceReference

(Worker)

Worker Resource

(type =

employee)

CurrentStatus:

ResourceStatus

Property - current location

(LocationDefinition)

Conveyor Resource

(type = carrier,

conveyor,

“power and

free” or trans-

porter)

CurrentSetup:

SetupDefinitionReference

CurrentStatus:

ResourceStatus

AssociatedResource:

ResourceReference

(Worker)

Property - current speed,

acceleration, and type,

location and number of

carriers

Job Job Status: JobStatus

Priority: String

ActualEffort:

JobEffortDescription

PlannedEffort:

JobEffortDescription

JobEffort-

Description

DueDate / ReleaseDate:

TimeStamp

StartTime / EndTime:

TimeStamp

ProcessPlan:

ProcessPlanReference

CurrentProcessPlanStep:

ProcessReference

MaintenancePlan:

MaintenancePlanReference

CurrentMaintenancePlan-

Step: MaintenanceProcess-

Reference

Property - remaining pro-

cessing times (double) [%]

Schedule Schedule StartTime / EndTime:

Timestamp

ScheduleItem:

ScheduleItem

ScheduleItem AssociatedJob:

JobReference

Part Part ProductionStatus:

PartProductionStatus

Location:

LocationDefinition

From the states and conditions discussed above, a certain

set can be used for initialization quite easily. This is

especially true for all enumerated data types which merely

describe a state of an element (e.g., machine state “idle”).

Other data, like the current status of already started jobs

(including maintenance or repair jobs) can be quite

difficult to capture from the real system and to map into

the simulation model state. First of all, this data will most

likely not be explicitly available from the real system.

Rather, if we want to know a remaining process time, we

will most likely only be able to determine a job’s starting

time and its planned processing time. From this we may be

able to estimate its remaining processing time. Still, it may

be difficult to appropriately integrate this information into

the simulation system.

The CMSD standard offers a variety of classes which can

be used for representing the data relevant for initialization.

We suggest the usage of the classes Resource, Part, Job,

JobEffortDescription, Schedule, ScheduleItem and

ProcessPlan. Table 2 exemplifies our suggested use.

The developed model generators described in the previous

section are capable of performing model initialization

based on the attributes indicated in Table 2.

Sometimes user-defined attributes (“properties” in the

CMSD terminology) had to be used when CMSD offered

no predefined attributes suitable for the required purpose.

This applies, for instance, to the current location of

workers or the remaining processing time of jobs.

Further enhancements are needed for representing the

current state of conveyors, but are beyond the scope of

discussion here. Details can be found in [3].

While the suggested extensions using properties are

designed to increase the accuracy of initializing simulation

models, a backward compatibility is easily maintained, as

initialization routines not capable of handling a certain

property will still be able to perform basic initialization

(ignoring additional properties), even if initialization is

then performed at a lower degree of accuracy.

4. CMSD-based output analysis

4.1 Capturing simulation result data in CMSD

CMSD-based simulation model generation (section 2) and

initialization (section 3) so far have considered how data

from external data sources can be transferred into data

usable in the simulation.

Our work on CMSD-based output analysis goes the

opposite direction. Here, we investigated, if CMSD is

capable of capturing simulation result data appropriately

and what can be done towards its analysis.

Simulation output data analysis is a well-studied domain

and must be carried out considering certain statistical rules

(replications for non-deterministic models, etc.) [12].

The type of desired output values is often highly

dependent on the simulation problem at hand. Typical key

performance indicators for manufacturing systems include

average cycle times, setup times, adherence to delivery

dates, resource utilization, etc.

To provide a great degree of flexibility for output data

analysis, simulation result data must be captured in a way

that all possible information needed for analyzing the

simulated system are contained.

We therefore suggest an abstraction level in which all

information potentially relevant for output analysis can be

represented adequately. Towards this, we suggest to

capture simulation output analogous to data a real

production data acquisition (PDA) system would capture.

In PDA, typically data about events on jobs, resources etc.

are collected. Events typically occur as a result of a status

change of an object, e.g., a job starts working on a

machine and is allocated a worker, or a machine fails. All

these kinds of events can be described by a timestamp, an

identifier, and, if necessary, references to related objects,

like jobs or resources.

The CMSD data structure most appropriate for these

purposes is the event class (Figure 4). The event class is

part of the basic structure package which itself is part of

the support package. The event class according to the

CMSD standard is only used by the JobEffortDescription

class located in the Production Operations Package.

Support

Basic

Structures



Event

SequenceNumber: String [0..1]

Name: String [0..1]

Description: String [0..1]

Timestamp: Timestamp [0..1]
Property: Property [0..*]

{At least one attribute

shall be present}

Figure 4: The CMSD Event Class, as part of the

Support/BasicStructures Package

According to CMSD, the event class provides a means to

plan for or record the occurrence of some phenomenon,

condition, or state that is relevant to production activities.

It can also typically be used to describe the actual effort

that occurred when processing a job. We suggest

enhancing this usage for more detailed simulation result

documentation purposes.

The Event Class has five attributes, from which all but the

attribute description are used in our approach.

Firstly, the attribute SequenceNumber is used to order

events in a logical order. Every event has a unique

number.

Secondly, the attribute Name classifies the type of the

recorded event. We suggest an enumeration of possible

values. These values mostly relate to state information and

include values such as start setup, start work, end work,

machine broken, machine repaired, etc.

Thirdly, the attribute Timestamp contains the date and

time when the event occurred. The representation is

defined according to ISO 8061.

Finally, we use at least one event type specific property

attribute. This property is used to record a relation of the

event to one or more objects it refers to, e.g., a worker or

machine.

When events are recorded that involve jobs (that is their

original purpose), the involved job is identifiable through

the hierarchy of the CMSD document, because the event

class is used inside a JobEffortDescription of a Job.

When event information must be recorded that does not

directly relate to a job, this job-centric use of the event

class may be problematic. An example for this is a

machine breakdown while no job is currently being

processed on it.

If this type of event is considered relevant for result

evaluation, we have different options to circumvent this

limitation in CMSD. A simple way for managing such

events is to co-locate the event with the last known job on

this machine. For this alternative we do not need any extra

property, but we are “extending” the intended use of the

event class inside the job class.

A second way to deal with this problem is to convert from

a job oriented view of events to a machine oriented view

as it would occur in real PDA. This could be done for all

events or only for special events. This alternative is

logically correct, but is problematic as resources like

machines in the CMSD standard do not have an Event

attribute. For this approach, we would have to use a user-

property to extend the CMSD standard, e.g., a reference

property to the Event Class.

For our tests of web based simulation output analysis, we

have used a third (and highly pragmatic) approach by

introducing a dummy job as a container for all non-job-

specific events.

4.2 Statistics Monitor

The objective of the statistics monitor developed within

our framework for web-based simulation was to compute

and visualize key performance indicators for the simulated

systems based on the event logs added to the CMSD files

during the simulation.

The statistics monitor allows two modes of evaluation:

1) Evaluation of a single CMSD result file.

2) Evaluation of multiple CMSD result files

obtained from different simulation runs that were

previously defined, e.g., for implementing

replications.

Depending on the mode of operation, different

visualizations and performance indicators can be

computed. Gantt-Charts visualizing job processing are an

example of a visualization useful for the single CMSD file

analysis. Multiple CMSD file analysis allows the

computation of typical statistical measures like mean

values, confidence intervals, standard deviations, etc.

Different views (resource centric – see Figure 5, job

centric) can be defined.

Figure 5: Screenshot of a resource centric evaluation

All performance indicators are computed based on

aggregated event data, i.e., performance indicators such as

cycle time and delay are obtained by post-processing the

event logs. In the same way, statistical values for groups

of entities (e.g., the mean value of the cycle time of all

jobs, the maximum setup time in front of a machine, etc.)

are computed.

4.3 Animation

We further investigated the applicability of the created

CMSD event logs for a post-processed animation of

simulation runs [2].

The basic idea here was to use the layout information

contained in the CMSD layout package to create a static

scene indicating resource locations using predefined

resource symbols.

The animation of the scene is then performed based on

event information from the CMSD events. This includes

the state change of resources (working/idle/broken) as

well as the movement of jobs and workers in the system.

Currently, a proof-of-concept implementation for 2D

animation based on the HTML 5 Canvas element and the

JavaScript Frameworks JQuery and KineticJS has been

implemented (see Figure 6 and [2]).

Figure 6: Sample screenshot of animation generated

from a CMSD file

From the CMSD point of view, no problems or additional

requirements towards animation were encountered. All

dynamics that is needed for a generic animation can be

expressed in CMSD events. Although they are not

animation specific, it is possible to automatically visualize

a basic animation of the simulation run based on that.

It should be noted, though, that CMSD is no graphics

exchange format. Therefore it does not contain any

geometrical scene description, but rather basic location

and shape information. Also, CMSD events in the used

form are no complete animation trace description, like it is

known from specialized animation systems like Proof

Animation [8, 9] or from visualization systems known

from the Virtual Reality domain.

5. Lessons Learnt & Recommendations

In different application scenarios we have successfully

verified the suitability of CMSD for modeling complex

production systems. We have successfully used CMSD for

extracting data from enterprise resource planning systems

such as SAP ERP and have automatically generated

simulation models in different simulation systems based

on the extracted information.

Our experience shows that there is sometimes room for

different interpretations about the intended use of some

CMSD classes. These interpretations can sometimes

constrain the exchange of data between different IT

systems and/or actors. Towards that, we suggest the

development and release of reference implementations

exemplifying the intended use of CMSD in certain

scenarios (e.g., for job shop and flow shop production

systems).

In our work, we rather frequently had to use the built-in

extensibility mechanism of CMSD. Virtually every CMSD

class can be extended using user-defined properties.

While this feature obviously increases the flexibility of

CMSD, each use of a property introduces a user-specific

enhancement of the standard, which may create

incompatibilities between different users, application

scenarios, or implementations that do not know how to use

this property.

Table 3 documents those user properties we created that

we consider candidates for an inclusion as standard

properties in a future release of the CMSD standard.

Especially the attribute “capacity” which we needed to

model buffer capacities is an element that should be

considered crucial for any resource, not only buffers.

Also decision and routine rules are candidates which we

consider important for modelling sequencing and routing

logic that go beyond simple “First-In-First-Out” style

default behavior.

Availability, MTTR, and reliability are important

enhancements for describing the behavior of resources in

conjunction with breakdown and repair. The importance

of setupSkills and repairSkills was discussed in section 2.

Table 3: Used properties that are suggested for

inclusion in a future version of CMSD standard.

Property

Name

Extended

Class

Data Type/

Allowed

Values

Description/

Intention

capacity Resource

{Resource-

Type= other;

buffer only}

Integer

(Values <0

for infinite

capacity)

Capacity of a

buffer (could

extend any

resource)

decision-

Rule

Resource

{Resource-

Type= other;

buffer only}

Enumeratio

n type

"Decision-

Rules"

Sequencing

rule applied

to the exit of

a buffer

routing-

Rule

Resource

{Resource-

Type= other;

buffer only}

Enumeratio

n type

"Routing-

Rules"

Routing rule

applied to

the exit of a

buffer

availabili-

ty

Resource

{Resource-

Type= station

OR machine}

Decimal

(>=0 ;

<=100)

Availability

in %

MTTR Resource

{Resource-

Type= station

OR machine}

Decimal

(>=0)

Mean Time

to Repair

after a

failure of a

resource

reliability Resource

{Resource-

Type= station

OR machine}

Decimal

(>=0 ;

<=100)

Waste rate

of a resource

in %

setupSkill Setup-

Definition

Skill-

Reference

Reference to

specific skill

required for

setup

repairSkill Ressource

{Resource-

Type= station

OR machine

Skill-

Reference

Reference to

a specific

skill required

for repair

Beyond these properties, some existing enumeration types

had to be extended for our purposes. Table 4 lists those

extensions that we also consider candidates for an

inclusion in a future release of the CMSD standard. We

especially think that the addition of the value “buffer” to

the enumerated data type ResourceType is a crucial

addition missing in the original CMSD standard.

A further useful extension concerning the usability of

events could be made by allowing references to Events.

This would, among others, require the addition of

“EventReference” to the enumerated data type

ReferenceTypeName. In addition, the event class should

be supplemented with an attribute “EventType” based on

the suggested enumerated data type “EventType” (see

table 4).

Table 4: Extended/created enumerated data types that

are suggested for inclusion in a future version of

CMSD standard.

Enumerated Data Type

(*indicates suggested new

type)

Values

(* indicates suggested

extension)

ResourceType carrier

conveyor

crane

employee

fixture

machine

path

powerAndFree

station

tool

tranporter

buffer*

other

ResourceStatus

busy

idle

broken

underMaintenance

unknown

setup*

paused*

DecisionRules*

FIFO*

LIFO*

KOZ*

LOZ*

SST*

HCM*

Slack*

Random*

…

RoutingRule*

SST*

roundRobin*

Random*

…

EventType*

released*

complete*

start work*

finish work*

start setup*

broken*

repaired*

start transportation*

finish transportation*

…

A final issue concerns the usability of stochastic

distributions. Although definition and use of distributions

and their parameters is possible using the Distribution

class and the DistributionParameter class, there are no

predefined distributions in CMSD. While a distribution

can be easily modeled by each modeler, there is no

prescription on the naming conventions for distributions

and their parameters. This issue does not necessarily

require an enhancement of the CMSD standard, but could

be solved by providing reference classes for the most

common distribution functions.

6. Summary

This paper presented our experience with the practical

application of the CMSD standard. While generally very

successful, we also found that CMSD on certain occasions

leaves room for different interpretations and different

styles of usage.

Most of these issues could be solved by providing

reference implementations and best practice

documentations. This could take the form of SISO

guidance products, e.g., for documenting the use of

CMSD for certain production types, or for documenting

the unambiguous use of certain classes (e.g., relating to

distribution functions).

On some occasions, we found items to be missing in the

CMSD standard. This mostly related to attributes of

classes or enumeration types. While CMSD’s extensibility

mechanism in most of these cases allowed a standard-

compliant extension, e.g., by adding user defined

properties to a class, some of these extensions could be a

worthwhile addition to a future revision of the CMSD

standard.

One of the core items that we would like to put forward

for such a revision is the inclusion of the type “buffer” to

the ResourceType enumeration, and the inclusion of the

attribute “capacity” to the resource class.

We also consider the suggested extensions for describing

the behavior of resources in conjunction with breakdown

and repair a crucial element needed in almost any

manufacturing simulation.

When thinking about extending CMSD to become a (at

least partial) model exchange format for manufacturing

simulations, more thought must also be given on modeling

dynamic behavior in CMSD. The suggested inclusion of

decision and routing rules is one step into that direction.

Finally, the suggested extended use of the event class

could open new options for using CMSD as simulation

trace format.

7. References
[1] Bergmann, S., Fiedler, A., and Strassburger, S.

2010. Generierung und Integration von

Simulationsmodellen unter Verwendung des Core

Manufacturing Simulation Data (CMSD)

Information Model. Generation and Integration of

Simulation Models Using the Core Manufacturing

Simulation Data (CMSD) Information Model. In

Tagungsband der 14. ASIM-Fachtagung Simulation

in Produktion und Logistik - Integrationsaspekte der

Simulation: Technik, Organisation und Personal.

ASIM-Mitteilung 131. Technische

Informationsbibliothek u. Universitätsbibliothek;

KIT Scientific Publ, Hannover, Karlsruhe, 461–468.

[2] Bergmann, S., Parzefall, F., and Straßburger, S.

2014. Webbasierte Animation von

Simulationsläufen auf Basis des Core Manufacturing

Simulation Data (CMSD) Standards. Web-based

Animation of Simulation Runs using the Core

Manufacturing Simulation Data (CMSD) Standard.

In 22. Symposium Simulationstechnik (ASIM 2014).

ASIM Mitteilung 151. ARGESIM / ASIM, Wien,

63–70.

[3] Bergmann, S., Stelzer, S., and Strassburger, S. 2011.

Initialization of Simulation Models Using CMSD. In

Proceedings of the 2011 Winter Simulation

Conference (WSC 2011). IEEE, Piscataway, NJ,

2223–2234. DOI=10.1109/WSC.2011.6147934.

[4] Bergmann, S., Stelzer, S., and Strassburger, S. 2012.

A New Web Based Method for Distribution of

Simulation Experiments Based on the CMSD

Standard. In Proceedings of the 2012 Winter

Simulation Conference (WSC 2012), 3057–3068.

DOI=10.1109/WSC.2012.6464985.

[5] Bergmann, S., Stelzer, S., Wuestemann, S., and

Strassburger, S. 2012. Model Generation in SLX

using CMSD and XML Stylesheet Transformations.

In Proceedings of the 2012 Winter Simulation

Conference (WSC 2012), 3046–3056.

DOI=10.1109/WSC.2012.6464981.

[6] Bloomfield, R., Mazhari, E., Hawkins, J., and Son,

Y.-J. 2012. Interoperability of Manufacturing

Applications Using the Core Manufacturing

Simulation Data (CMSD) Standard Information

Model. Computers & Industrial Engineering 62, 4,

1065–1079.

[7] Fournier, J. 2011. Model Building with Core

Manufacturing Simulation Data. In Proceedings of

the 2011 Winter Simulation Conference (WSC

2011), 2219–2227.

[8] Henriksen, J. O. Adding Animation to a Simulation

Using Proof. In Proceedings of the 2000 Winter

Simulation Conference, 191–196.

[9] Henriksen, J. O. 1999. General-Purpose Concurrent

and Post-Processed Animation with Proof. In

Proceedings of the 1999 Winter Simulation

Conference, 176–181.

[10] Henriksen, J. O. 1999. SLX - The X is for

eXtensibility. In Proceedings of the 1999 Winter

Simulation Conference, 167–175.

[11] Johansson, M., Leong, S., Lee, Y. T., Riddick, F.,

Shao, G., Johansson, B., Skoogh, A., and Klingstam,

P. 2007. A Test Implementation of the Core

Manufacturing Simulation Data Specification. In

Proceedings of the 2007 Winter Simulation

Conference. December 9 - 12, 2007, Washington,

DC, U.S.A. ACM, IEEE, New York, NY, 1673–

1681.

[12] Law, A. M. 2014. Simulation Modeling and

Analysis. McGraw-Hill series in industrial

engineering and management science. Mcgraw Hill

Book Co.

[13] Lee, Y.-T. T., Riddick, F. H., and Johansson, B.

2011. Core Manufacturing Simulation Data – a

Manufacturing Simulation Integration Standard:

Overview and Case Studies. International Journal

of Computer Integrated Manufacturing 24, 8, 689–

709.

[14] Simulation Interoperability Standards Organization.

2010. Standard for: Core Manufacturing Simulation

Data - UML Model. Core Manufacturing Simulation

Data Product Development Group, SISO-STD-008-

2010. http://www.sisostds.org/

DigitalLibrary.aspx?Command=Core_Download&E

ntryId=31457.

[15] Simulation Interoperability Standards Organization.

2012. Standard for Core Manufacturing Simulation

Data – XML Representation. Core Manufacturing

Simulation Data Product Development Group,

SISO-STD-008-01-2012. http://www.sisostds.org/

DigitalLibrary.aspx?Command=Core_Download&E

ntryId=36239.

Author Biographies

SÖREN BERGMANN holds a Doctoral and Diploma

degree in business information systems from the Ilmenau

University of Technology. He is a member of the

scientific staff at the Department for Industrial

Information Systems. Previously he worked as corporate

consultant in various projects. His research interests

include generation of simulation models and automated

validation of simulation models within the digital factory

context. His email is soeren.bergmann@tu-ilmenau.de.

mailto:soeren.bergmann@tu-ilmenau.de

STEFFEN STRASSBURGER is a professor at the

Ilmenau University of Technology and head of the

Department for Industrial Information Systems.

Previously he was head of the “Virtual Development”

department at the Fraunhofer Institute in Magdeburg,

Germany and a researcher at the DaimlerChrysler

Research Center in Ulm, Germany. He holds a Doctoral

and a Diploma degree in Computer Science from the

University of Magdeburg, Germany. He is further an

associate editor of the Journal of Simulation. His research

interests include distributed simulation, automatic

simulation model generation, and general interoperability

topics within the digital factory context. He is also the

Vice Chair of SISO’s COTS Simulation Package

Interoperability Product Support Group. His web page can

be found via www.tu-ilmenau.de/wi1. His email is

steffen.strassburger@tu-ilmenau.de.

http://www.tu-ilmenau.de/wi1
mailto:steffen.strassburger@tu-ilmenau.de

