
Optimistic Synchronization in the HLA 1516.1-2010:

Interoperably Challenged

Steffen Strassburger

Department for Industrial Information Systems

Ilmenau University of Technology

Helmholtzplatz 3

98693 Ilmenau, GERMANY

steffen.strassburger@tu-ilmenau.de

Keywords:

Time Management, Optimistic Synchronization, flushQueueRequest.

ABSTRACT: Time Management can be considered as one of the key achievements of the High Level Architecture for

Modeling and Simulation (HLA). While HLA’s time management is supposed to offer a unique support for

heterogeneous time advancement schemes, its practical use is often limited to conservative time advancement (e.g.

using services such as nextMessageRequest/nextMessageRequestAvailable) or time stepped time advancement (e.g.

using services such as timeAdvanceRequest/timeAdvanceRequestAvailable). In this paper, we investigate HLA’s

capabilities for supporting optimistic time advancement and the interoperability between optimistic and conservative

federates. The results are strikingly disappointing. While HLA had initially taken off with the noble vision of

federations including both optimistic and conservative federates within a single federation execution, the current

implementations of two leading RTI vendors fall short of achieving this objective. Neither do they enable the efficient

execution of federations consisting of purely optimistically synchronized federates nor do they facilitate

interoperability between optimistic and conservative federates. This paper documents the observed problems and

discusses potential limitations in the IEEE HLA 1516.1-2010 specification and its interpretation by RTI vendors.

1. Introduction

The HLA is a distributed simulation standard that intends

to support heterogeneous time advancement schemes,

including conservative and optimistic approaches. The

basic idea of HLA Time Management (HLA TM) services

is that HLA federates (i.e. individual simulations

participating in an HLA based distributed simulation)

have to request time advancement from the RTI. The RTI

coordinates these requests and issues time advance grants

according to the requests and guarantees it has.

Surveying the practical application of HLA shows that

application of HLA TM, if used at all, has traditionally

relied on services for conservative or time stepped

synchronization, but did not often include optimistic

synchronization services.

The infrequent usage of HLA-based optimistic

synchronization for practical applications might be due to

HLA not being a standard commonly frequented by the

Parallel Discrete Event Simulation (PDES) community, at

least if high performance and efficient execution are

intended.

The few exceptions include Ferenci et al. [5], who

investigated the options for federating different instances

of Georgia Tech Time Warp (GTW) simulations and

Vardanega and Maziero [16], who proposed the idea of a

generic rollback manager for freeing optimistic HLA

federates from some of the implementation overhead of

optimistic synchronization.

When considering the application of HLA as

interoperability standard for the connection of different

commercial off the shelf simulation packages (CSP) [12],

the choice of a performant synchronization scheme has a

significant impact on execution speed and thus general

acceptance.

Many interoperability problems encountered when

connecting CSPs (see [10]) have an inherent zero

Lookahead requirement. Since conservative protocols are

known to have the worst performance under zero

Lookahead conditions, the application of optimistic

synchronization becomes appealing.

The general idea of optimistic synchronization is to allow

simulations to process messages even if there is no

guarantee that messages with a lower timestamp will not

be received in their future. This “optimistic” execution of

messages is based on the hope that causality violations,

although possible, in fact will not or only sparsely occur.

If an optimistically synchronized simulation receives a

mailto:steffen.strassburger@tu-ilmenau.de

message that is in its logical past, it must take actions to

reestablish causality. This is typically achieved by

performing a rollback to a previously recorded state.

The only known research that investigated optimistic

synchronization in the context of CSPs was conducted by

Wang et al. [18]. Their work focused on ways of

providing optimistic synchronization capabilities to a CSP

in a manner that does not require major user involvement.

While the application of optimistic synchronization to the

domain of CSPs also builds the background for this paper,

we here focus on the HLA related aspects of enabling

optimistic synchronization and interoperability between

optimistic and conservative federates. Aspects concerning

the integration of optimistic synchronization into a CSP

are reported in [11].

The remainder of this paper is structured as follows.

Section 2 gives a brief introduction into HLA Time

Management. Section 3 reviews the evolvement of those

time management services that are supposed to enable

optimistic synchronization over the different revisions of

specification in the HLA. Section 4 introduces a small

case study used to test optimistic synchronization and

documents the results. Section 5 discusses potential

changes needed in the HLA specification to prevent the

problems observed in current RTI implementations.

2. Time Management in the HLA
The design and intentions of HLA Time Management

were first described in [13] and [8]. Experiences with first

implementations were published in [4].

As this paper obviously cannot discuss the entire design

rational of HLA TM, this section intends to convey the

essentials important for the remainder of this paper.

Time management in the HLA in general encompasses

two aspects of federation execution, namely transportation

services and time advancement services [13]. We here

focus on time advancement services. They provide

different primitives for federates to advance in logical

time. Transportation services are equally important and

provide different reliability and message ordering

characteristics. For the purposes of this paper, we assume

federates to use time-stamp ordered (TSO) and reliable

message transport.

The general idea of HLA TM is that federates

participating in HLA TM have to request the advancement

of their logical time from the RTI. The RTI collects these

requests and grants time advancement based on the

requests and other guarantees (e.g. lookaheads) it is aware

of.

Whether federates wish to participate in HLA TM is

indicated by two logical switches named time constrained

and time regulating. A time constrained federate is

constrained by the logical time of other federates. A time

regulating federate intends to participate in determining

the logical time of other federates. Both switches are

typically turned on for fully synchronized federates (only

these are considered here).

Federates are further encouraged to indicate a Lookahead

value to the RTI. Lookahead is a guarantee that a federate

will not schedule any event with a time stamp less that the

federate’s current logical time plus the Lookahead value.

Initial versions of the HLA required a Lookahead value

strictly greater than zero. This requirement was relaxed

subsequently following a proposal made in [6].

HLA time advance services provide a means for the

federate to request its advancement of logical time and to

control the delivery of new messages to the federate. The

following groups of time advance services are defined:

timeAdvanceRequest (TAR) / timeAdvanceRequestAvail-

able (TARA)

These services are intended for federates advancing its

logical time in time steps. By invoking a TAR(t), the

federate is guaranteeing that it will not generate a TSO

message at any time in the future with time stamp less than

t plus that federate’s Lookahead [13].

After invoking TAR, all messages eligible for delivery to

the federate are passed to the federate by the RTI. A

subsequent invocation of timeAdvanceGrant (TAG) by the

RTI indicates to the federate that no additional TSO

messages with time stamp less than or equal to t will be

delivered in the future.

TARA(t) is the service flavor for zero Lookahead federates

that want to be able to generate messages with a time

stamp equal to the time returned by TAG as grant time.

nextMessageRequest (NMR) / nextMessageRequestAvail-

able (NMRA)
1

These services provide support for conservative

synchronization approaches. They are suitable for event

driven simulations without rollback capabilities. An

NMR(t) call can be interpreted as a request of the federate

to advance the logical time of the federate to t or to

deliver the next TSO message, provided that the message

1
 In earlier HLA versions, these services were called

nextEventRequest and nextEventRequestAvailable.

has a time stamp no greater than t. A subsequent

invocation of TAG by the RTI will return the time stamp

of the TSO message delivered to the federate or t if no

TSO messages were delivered. This in effect advances the

federate’s logical time to the value returned by TAG.

Once that TAG has been received, no subsequent TSO

message will be delivered to the federate with a time

stamp less than or equal to the federate’s logical time.

It is worth noting that the parameter t passed in NMR(t)

constitutes a conditional guarantee of the federate that it

will not generate any new TSO messages with a time

stamp less than or equal to t, unless it receives any TSO

messages before the TAG call with a smaller time stamp

than t.

NMRA(t) is the service flavor for zero Lookahead

federates allowing a federate to still generate messages

with a time stamp equal to the time returned in TAG as

grant time.

flushQueueRequest (FQR)

FQR(t) is the service by which optimistic federates can

request out-of-order delivery of TSO messages. FQR(t)

releases all messages stored in the RTI’s internal queues

and delivers them to the federate invoking this service.

FQR(t) can be considered as the central service for

optimistic federates. Further details on its evolvement in

the different HLA revisions are given in section 3.

Other services needed for optimistic federates include

services to cancel sent messages (provided by the service

pair retract/requestRetraction).

An essential additional requirement for optimistic

federates is the need to be able to compute a lower bound

on the logical time of any future rollback. This lower

bound is called Global Virtual Time (GVT) and allows

optimistic federates to free memory used for state

checkpoints and message logs. In the HLA, the minimum

of a federates LBTS
2
 and the time stamp of messages in

the RTI’s local message queue provide the information

necessary to determine GVT [7].

2
 LBTS can be defined as the “lower bound on the time

stamp” of any subsequent message the RTI at a particular

federate will receive from another federate [13].

3. Evolvement of FlushQueueRequest

3.1 HLA Time Management Design Document

The HLA Time Management Design Document (Version

1.0 from August 15, 1996) mentions both the optimistic

execution among a collection of optimistic federates and

federations including both optimistic and conservative

federates as design goals for HLA TM [13]. HLA TM

does not require all federates to support a rollback and

recovery capability. Rather, optimistic messages are

visible only to federates explicitly requesting to see them.

The service suggested for these purposes is

flushQueueRequest(t), or FQR(t) for short. This primitive

releases all messages stored in the RTI’s internal queues

and delivers them to the federate invoking this service. All

available TSO messages will be delivered, despite the fact

that the RTI may not be able to guarantee that messages

with a smaller time stamp could arrive later. The

parameter t indicates that if the federate does not receive

TSO messages with a time stamp smaller than t, then the

federate’s logical time can be advanced up to t.

It is important to note that invoking FQR(t) constitutes a

conditional guarantee of the federate that it will not

generate any new TSO messages with time stamp less than

t plus the federate’s lookahead if it does not receive any

new TSO messages with time stamp less than t. In that

regard, t has a similar importance as the t parameter in

NMRA(t).

The HLA TM Design Document [13] further suggests a

dedicated flushQueueGrant(t) service, FQG(t) for short,

that indicates that the FQR(t) service is completed. The

time parameter of this call indicates that logical time for

the federate has been advanced to this value and no

additional TSO messages with a time stamp less than this

value will be delivered in the future. This time parameter

is defined “as the lesser of LBTS and the time parameter

of the Flush Queue Request that resulted in this call”

[13].

Please note that some discussion concerning this

definition of the return value for FQG(t) is needed. In

essence, it is defined as the minimum of LBTS and the t

parameter passed in the preceding FQR(t) call. The

importance of this return value is two-fold:

1) From the federate’s point of view, the return value

enables to determine GVT and perform fossil

collection.

2) From the RTI’s point of view, federate time is

advanced to the return value, preventing the federate

to send messages with a lower time stamp to the RTI.

In [17] it was shown, that the second implication is

problematic to the federate, as the definition of the return

value of FQG prevents a federate to respond to any

message delivered after the FQR(t) invocation in a timely

manner.

Beginning with HLA 1516-2000 this problem was solved

and the minimum time stamp of any TSO message

delivered in response to the FQR(t) call was added to the

minimum determination expression defining the return

value for FQG.

3.2 HLA Interface Specification Versions prior to 1.3

Due to time and space constraints, we refrain from

discussing any versions of the HLA interface specification

prior to version 1.3. For those interested, the HLA

Programmers Guide for RTI 1.0.3 [14] implementing

HLA Interface Specification Version 1.1 provides some

historical reference.

3.3 HLA Interface Specification Version 1.3

The HLA Programmers Guide for RTI 1.3NG

(implementing HLA Interface Specification Version 1.3)

[15] defines FQR as follows:

“When the flushQueueRequest() service is used, the

federate’s LRC will be eligible to release […] all time-

stamp ordered messages from the TSO queue. After all

TSO messages that were in the queue at the time of the

flushQueueRequest() invocation have been released, the

federate will receive a timeAdvanceGrant() callback via

the FederateAmbassador with time equal to LBTS or the

time requested in the flushQueueRequest(), whichever is

less” [15, p. 6-4].

Parameter t passed in FQR(t) is defined as “the maximum

logical time to which to advance upon completion of the

flush” [15 (Appendix A), p. 5-10].

Essential for the return value of the following TAG call is

the applied definition of LBTS: “The LBTS specifies the

time of the earliest possible time-stamp-ordered event the

federate can receive. The LBTS is determined by looking

at the earliest possible message that might be generated

by all other regulating federates” [15, p. 3-3].

Please note that there is a subtle distinction between

LBTS and a quantity called “Minimum Next Event Time”.

While “LBTS is the greatest time-stamp such that it can

be guaranteed that no time-stamp-ordered events will be

subsequently generated in the federation with a lesser

time-stamp” [15 (Appendix A), p. 5-15] it may still be

possible, “that events with time stamps earlier than the

LBTS may still be queued for time-stamp-ordered delivery

to a federate; the LBTS merely indicates that no time-

stamp-ordered events will be subsequently generated with

an earlier time stamp” [15 (Appendix A), p. 5-15].

Minimum Next Event Time includes these events and is

defined as “minimum time-stamp of all time-stamp

ordered events that may be subsequently delivered to the

federate” [15 (Appendix A), p. 5-15].

Interestingly, there is an ambiguity in the HLA 1.3 NG

Programmers Guide as to the return value of the TAG

following FQR. While the definition given above talks

about returning the minimum of LBTS and the t parameter

passed in FQR(t), the appendix A of the HLA 1.3 NG

Programmers Guide specifies “the minimum of the

minimum-next-event time and the specified cutoff time”

[15 (Appendix A), p. 5-10] as return value of TAG.

Assuming that prior to the TAG call, all TSO events were

delivered to the federate as mandated by FQR, LBTS and

minimum next event time can be considered equivalent,

though, healing this ambiguity.

In retrospective, the definitions discussed above are

semantically equivalent to those from the HLA TM

Design Document, with the single difference that the HLA

Interface Specification 1.3 now does not use a dedicated

FQG service for completing the FQR, but a unified TAG

service, that completes all time advance services.

For further discussion, it is essential to note that

 FQR is clearly a service that shall advance

logical federate time, and

 LBTS determination is necessary for determining

the return value of the TAG following a FQR.

3.4 HLA Standard 1516.1-2000

The federate interface specification defined in HLA

1516.1-2000 [1] introduced several changes concerning

HLA TM. While the definition of the intention of FQR

remained unchanged (“The FQR service shall request that

all messages queued in the RTI that the joined federate

will receive as TSO messages be delivered now” [1, p.

143]), the specification of the resulting logical federate

time was modified. The necessity of this modification was

first discovered in [17] (see also discussion in section

3.1).

The resulting logical federate time (indicated by the return

value of the subsequent TAG invocation) is now defined

as the minimum of the

 logical time t passed in FQR(t),

 the federate’s GALT value (definition of GALT

see below), and

 the smallest time stamp of all TSO messages

delivered in response to the FQR(t) call.

Another apparent change in the HLA TM relates to the

quantities LBTS and Minimum Next Event Time from

HLA 1.3. Instead of these terms, HLA TM now introduces

Greatest Available Logical Time (GALT) and Least

Incoming Time Stamp (LITS).

GALT is defined as “the greatest logical time to which the

RTI guarantees it can grant an advance without having to

wait for other joined federates to advance” [1, p. 125].

A joined federate’s LITS is “the smallest time stamp that

the joined federate could (but not necessarily will) receive

in the future in a TSO message. A joined federate’s LITS

is calculated by the RTI and is based on the joined

federate’s GALT and any queued TSO messages that may

later be received by the joined federate” [1, p. 125].

Comparing the definitions, LITS is simply the new term

for what was known as Minimum Next Event Time in

HLA 1.3.

Although some authors see GALT just as well as a new

term for LBTS [3], their definitions differ. Potential

implications of these differing definitions remain to be

discussed in due course of this paper.

Another apparently small addition to the description of

FQR was made by introducing the sentence that an “FQR

can always be granted without waiting for other joined

federates to advance” [1, p. 143]. This sentence was not

present the HLA 1.3 specification and seems to be of

explanatory nature. However, the strict interpretation of

this sentence can lead to severe interoperability problems.

This sentence in essence encourages RTI developers to

ignore the t parameter passed in FQR(t) when performing

GALT computations. The ramifications of this will be

discussed in section 4.

In retrospective, the HLA TM in HLA 1516.1-2000

corrected a mistake in the minimum definition of the

return value of the TAG following a FQR call. At the same

time, it introduced a new quantity named GALT to that

minimum definition replacing the well-accepted LBTS.

The specification unfortunately remains somewhat fuzzy

on defining how GALT is to be computed (“A joined

federate’s GALT is calculated by the RTI and is based on

factors such as the logical time, lookahead, and requests

to advance the logical time of time-regulating joined

federates” [1, p. 125]). The addition of the sentence

described above furthers the fuzziness as it suggests that t

in FQR(t) has no influence on GALT computation.

3.5 HLA Standard 1516.1-2010 (“HLA-Evolved”)

HLA 1516.1-2010 [2] did not introduce any significant

changes concerning FQR. It provided a small clarification

towards the minimum determination discussed above. In

addition, Annex E.8.1 now informs about the rational for

the change made to the minimum determination

introduced in HLA 1516-2000.

Further discussions in this paper are based on HLA

1516.1-2010 as the latest official version of the HLA

standard.

4. Experiments
4.1 Experimental Setup

HLA’s vision was to promote interoperability between

federates using different time advancement schemes. To

test the degree of fulfillment of this vision, we set up four

distinct scenarios. Each scenario is a federation with two

federates implementing a CSP interoperability reference

model proposed in [10].

The scenario consists of two federates implementing a

bounded buffer entity transfer problem of type IRM A.2

(Figure 1). Both federates exchange TSO interaction

messages concerning entities to be transferred from

federate 1 to federate 2 and concerning the content of

queue Q2 in federate 2. It can be noted that the actual

problem simulated is completely irrelevant for the further

discussions.

 COTS Simulation Package CSP1

Federate F1

COTS Simulation Package CSP2

Federate F2

Model M1

Q1 WS1

Model M2

Q2 WS2

Entity e1 attempts to

leave WS1 at T1 and

arrive at M2 at T2 in a

bounded queue

Bounded

Figure 1: Conceptual Model of IRM Type A.2 [10]

Both federates were implemented in SLX [9] (Version

2.3, Build EP 264). The commercial pRTI 5.0.0.0 (Build

1887) from Pitch was used as primary RTI software. The

applied implementation of the SLX-HLA-Interface uses

the HLA 1516.1-2010 (“HLA-Evolved”) C++ API. The

experiments were later repeated and verified against MÄK

RTI 4.3 which exhibited the same behavior as observed

with pRTI.

While the simulated behavior of both federates was kept

constant, the time management characteristics were varied

according to the design provided in table 1. Time

management switches were set to time constrained and

time regulating in all scenarios.

Table 1: Design of Experiments

 Federate 1 Federate 2

Scenario 1

Synchronization Optimistic

(FQR)

Optimistic

(FQR)

Lookahead 0 0

Scenario 2

Synchronization Optimistic

(FQR)

Optimistic

(FQR)

Lookahead 10 10

Scenario 3

Synchronization Optimistic

(FQR)

Conservative

(NMRA)

Lookahead 0 0

Scenario 4

Synchronization Optimistic

(FQR)

Conservative

(NMR)

Lookahead 10 10

Concerning the results, we observed the behavior of the

time advancement in the federation. In specific, we

recorded the return values obtained from the TAG

services. Although we did not record wall clock time of

each service call, Tables 2-5 provide a clear picture

concerning the logical sequence of the individual calls.

Please note that we do not display the sendInteraction and

receiveInteraction calls in the tables. In cases where they

had influence on the observed TAGs, they are mentioned

in the textual descriptions.

4.2 Results

4.2.1 Scenario 1

In this scenario, both federates have zero Lookahead.

They use FQR to advance through their simulation time.

The results displayed in table 2 show that the return value

of the TAG following an FQR(t) was always zero. This

behavior was independent from the occurrence of any

TSO message exchange.

Table 2: Excerpt from sequence of FQR/TAG calls for

scenario 1

Sequence of

calls

Federate 1 Federate 2

1 FQR(188.66)

TAG (0.0)

FQR(86400.00)

TAG (0.0)

2 FQR(377.33)

TAG (0.0)

FQR(388.66)

TAG (0.0)

3 FQR(754.66)

TAG (0.0)

FQR(588.66)

TAG (0.0)

… … …

n FQR (86400.00)

TAG (0.0)

FQR (86400.00)

TAG (0.0)

The zero TAG values prevented any garbage collection

required for optimistically synchronized federates. In

essence, federate logical time and GALT were not

advanced at all. Parameter t passed in FQR(t) did not have

any influence on their determination.

4.2.2 Scenario 2

In this scenario, both federates have a Lookahead greater

than zero (arbitrarily set to 10). They still used FQR to

advance through their simulation time. The results

displayed in table 3 show that the return value of the TAGs

is now greater than zero (except for the very first TAG

call), but still the return value has no correlation with the

parameter t passed in FQR(t). In essence, the return value

of TAG now takes the guarantees into account that

Lookahead provides.

Table 3: Excerpt from sequence of FQR/TAG calls for

scenario 2

Sequence of

calls

Federate 1 Federate 2

1 FQR(188.66)

TAG (0.0)

FQR(86400.00)

TAG (10.00)

2 FQR(377.33)

TAG (20.0)

FQR(388.66)

TAG (30.0)

3 FQR(754.66)

TAG (40.0)

FQR(588.66)

TAG (50.0)

… … …

n FQR (86400.00)

TAG (17000.00)

FQR (86400.00)

TAG (17010.00)

Looking at line 1 in table 3, when federate 1 has received

its TAG(0.0), the RTI can safely advance federate 2’s

logical time to 10 (based on Lookahead information from

federate 1). In the subsequent FQR call of federate 1, it

can issue a TAG(20.0) based on federate 2’s Lookahead of

10 (and so on).

While this behavior seems to provide some hope for

optimistic federates to perform garbage collection, the

observed way of determining the TAG value still ignores

the conditional guarantee that the t parameter from FQR(t)

provides.

4.2.3 Scenario 3

In this scenario, both federates have zero Lookahead

again. Federate 1 is optimistic and uses FQR to advance

through simulation time. Federate 2 is conservative and

uses NMRA to advance simulation time. As can be seen

from table 4, the FQR calls again always result in a

TAG(0.0), as in scenario 1.

The conservative federate 2 on the other hand was stuck

after its first NMRA and waited for a TAG. This situation

lasted until federate 1 resigned from the federation.

Only when federate 1 had resigned, would federate 2

receive a TAG to its very first NMRA call.

In case that federate 1 sent any TSO interaction messages

to federate 2, the very first TSO message was delivered

prior to that TAG call. The time stamp of the TAG call was

then equal to the delivered TSO message. This case is

displayed in table 4 – the TAG(377.33) indicates that an

interaction message with that time stamp was received just

prior to the TAG call (but only after federate 1 resigned).

The observed behavior in essence stalled any

interoperability between optimistic and conservative

federates at all. While federate 1 would simulate through

its simulation time, federate 2 would only be allowed to

continue simulation after federate 1 resigned. While

Federate 2 would then still receive any TSO messages sent

from federate 1, it was not able to react appropriately to

these messages and deliver any feedback to federate 1.

Table 4: Excerpt from sequence of FQR/NMRA/TAG

calls for scenario 3

Sequence of

calls

Federate 1 (F1) Federate 2 (F2)

F1 F2

1 1 FQR(188.66)

TAG (0.0)

NMRA (86400.00)

2 FQR(377.33)

TAG (0.0)

3 FQR(754.66)

TAG (0.0)

… …

n FQR (86400.00)

TAG (0.0)

n+1 RFE
3

 TAG(377.33)

 2 NMRA(388.66)

TAG (388.66)

 3 NMRA(588.66)

TAG (588.66)

 …

 m NMRA (86400.00)

TAG(86400.00

With that, interoperability between conservative and

optimistic federates with zero Lookahead has to be

considered completely broken.

3
 RFE = resignFederationExecution

On side note, the observed behavior was independent

from the time stamp passed in NMRA, e.g., issuing

NMRA(600) instead of NMRA(86400) would result in the

same sequence of calls as shown in table 4.

4.2.3 Scenario 4

In this scenario, both federates have a Lookahead greater

than zero (arbitrarily set to 10), again. Federate 1 is

optimistic and uses FQR to advance through simulation

time. Federate 2 is conservative and uses NMR to advance

simulation time.

The results here differ from scenario 3 only in that regard,

that the optimistic federate 1 now receives non-zero TAGs

that appear to somehow be based on the Lookahead values

of both federates. The remainder of observations is

identical to scenario 3.

Interoperability between conservative and optimistic

federates with non-zero Lookahead has to be considered

completely broken, too.

Table 5: Excerpt from sequence of FQR/NMR/TAG

calls for scenario 4

Sequence of

calls

Federate 1 (F1) Federate 2 (F2)

F1 F2

1 1 FQR(188.66)

TAG (20.0)

NMR (86400.00)

2 FQR(377.33)

TAG (40.0)

3 FQR(754.66)

TAG (60.0)

… …

n FQR (86400.00)

TAG (17000.00)

n+1 RFE
3

 TAG(377.33)

 2 NMR(388.66)

TAG (388.66)

 3 NMR(588.66)

TAG (588.66)

 … …

 m NMR (86400.00)

TAG(86400.00

Comparing scenarios 2 and 4, the observed return value of

the TAG in scenario 4 seems to be even more erratic and

inexplicable. While the TAGs in scenario 2 were

consistently based on Lookahead provided guarantees

only, this is not the case in scenario 4.

4.3 Discussion

From the documented scenarios it becomes obvious that

the t parameter passed in FQR(t) is not taken into account

when determining the return value of the resulting TAG

call.

While the HLA 1516.1-2010 actually states that GALT

computation shall consider factors such as “requests to

advance the logical time”, RTI implementations seem not

to consider FQR(t) as such a request.

While this is a nuisance for optimistic federates (as they

cannot comfortably determine GVT), this becomes a

show-stopper for federations involving optimistic and

conservative federates.

While the described observations seem to be obviously

different from what HLA Time Management intended,

feedback from Pitch Priority Support is that they consider

the behavior as a correct interpretation of the HLA

standard. The main issue at hand here is, which influence

the parameter t passed in FQR(t) shall have on GALT

calculation, as GALT is fundamental for the return value

of the TAG following a FQR(t).

There are two aspects in the FQR definition [2, p. 171f]

that support the interpretation embraced by Pitch:

1) The FQR definition mentions that “A FQR service

can always be granted without waiting for other

joined federates to advance.” [2, p. 171]. This

basically can be interpreted as an invitation not to

perform any GALT calculations when FQR is called.

2) The return value of the resulting TAG takes reference

on GALT. GALT however, is defined differently

from LBTS as “the greatest logical time to which the

RTI guarantees it can grant an advance without

having to wait for other joined federates to advance”

[2, p. 153]. While the LBTS definition (see 3.3)

seems comparable (“LBTS is the greatest time-stamp

such that it can be guaranteed that no time-stamp

ordered events will be subsequently generated in the

federation with a lesser time-stamp”), it does not

contain the latter part of the GALT definition

(“without having to wait for other joined federates to

advance”). The interpretation of the GALT definition

could therefore be that GALT, once determined, is

locally correct and independent from other federates.

The LBTS definition on the other hand would likely

have to be interpreted in such a way, that whenever

LBTS is referred to, a distributed snapshot

calculation of LBTS of the entire federation is

needed.

In essence, the strict interpretation of the HLA1516.1-

2010 could be that FQR(t) can trigger a TAG immediately

based on locally available GALT information - without

starting a new GALT computation and thus ignoring t.

With that interpretation, the design goals of HLA TM

cannot be achieved. If that interpretation sustains, a

change to the HLA specification is required.

5. Summary and Recommendation

This article has investigated HLA’s support for

interoperability between federates using different time

advancement schemes. Investigations were based on the

(at the time of writing) current HLA 1516.1-2010 (“HLA-

Evolved”) specification and the RTI implementations of

two leading RTI vendors implementing this standard.

In specific, interoperability between purely optimistic

federates and interoperability involving both optimistic

and conservative federates was tested.

The results were strikingly disappointing. Interoperability

between purely optimistic federates was handicapped, as

the determination of global virtual time (GVT) was

severely hampered (Lookahead greater than zero) or even

completely impossible (Lookahead equal to zero).

Interoperability between a conservative and an optimistic

federate was completely halted, as the conservative

federate would block until the optimistic federate would

resign.

The reasons for this lack of interoperability seem to lie in

the way HLA definitions of the flushQueueRequest

service and the Greatest Available Logical Time (GALT)

are interpreted by RTI vendors.

To prevent the interpretation currently embraced by Pitch,

we suggest the following modifications to the HLA

standard.

Recommendation 1: Remove the sentence “A Flush

Queue Request service can always be granted without

waiting for other joined federates to advance.” [2, p. 171]

from the definition of the Flush Queue Request Service.

Recommendation 2: Clarify the required treatment of

conditional guarantees expressed via the time parameter t

of NMR(t)/NMRA(t) and FQR(t) and their necessary

influence on GALT computations ([2] - Section 8.1.5

Time-constrained joined federates).

Recommendation 3: Clarify on which occasions a new

GALT computation shall be required and which service

invocations shall initiate it. This clarification could

enhance the service descriptions of all time advancement

services (e.g., “Each invocation of FQR made by a time

regulating federate shall trigger a new GALT

computation.”), or be put into section E.8 of [2].

6. References
[1] IEEE Standard for Modeling and Simulation (M&S)

High Level Architecture (HLA). Federate Interface

Specification. Institute of Electrical and Electronics

Engineers, New York, IEEE Std 1516.1-2000.

[2] IEEE Standard for Modeling and Simulation (M&S)

High Level Architecture (HLA). Federate Interface

Specification. Institute of Electrical and Electronics

Engineers, New York, IEEE Std 1516.1-2010.

[3] Buquan Liu, Yiping Yao, and Huaimin Wang. 2007.

An Efficient Algorithm in the HLA Time

Management. In Proceedings of the 2007 Winter

Simulation Conference. December 9 - 12, 2007,

Washington, DC, U.S.A. ACM, IEEE, New York,

NY, 585–593.

[4] Carothers, C. D., Fujimoto, R. M., Weatherly, R.

M., and Wilson, A. L. 1997. Design and

Implementation of HLA Time Management in the

RTI Version F.0. In Proceedings of the 1997 Winter

Simulation Conference. Atlanta, GA, 7-10

December 1997. ACM, IEEE, Piscataway, NJ, 373–

380.

[5] Ferenci, S. L., Perumalla, K. S., and Fujimoto, R. M.

2000. An Approach for Federating Parallel

Simulators. In 14th Workshop on Parallel and

Distributed Simulation (PADS 2000), 63–70.

DOI=10.1109/PADS.2000.847145.

[6] Fujimoto, R. M. 1997. Zero Lookahead and

Repeatability in the High Level Architecture. In

1997 Spring Simulation Interoperability Workshop.

[7] Fujimoto, R. M. 1998. Time Management in the

High Level Architecture. SIMULATION 71, 6, 388–

400.

[8] Fujimoto, R. M. and Weatherly, R. M. 1996. Time

Management in the DoD High Level Architecture.

SIGSIM Simul. Dig. 26, 1, 60–67.

[9] Henriksen, J. O. 1999. SLX - The X is for

eXtensibility. In Proceedings of the 1999 Winter

Simulation Conference, 167–175.

[10] Simulation Interoperability Standards Organization.

2010. Standard for Commercial-off-the-shelf

Simulation Package Interoperability Reference

Models (SISO-STD-006-2010). http://

www.sisostds.org/

DigitalLibrary.aspx?Command=Core_Download&E

ntryId=30829.

[11] Strassburger, S. HLA-based Optimistic

Synchronization with SLX. In Proceedings of the

2015 Winter Simulation Conference, L. Yilmaz, W.

K. V. Chan, I. Moon, T. M. K. Roeder, C. Macal

and M. D. Rossetti, Eds.

[12] Taylor, S. J. E., Turner, S. J., Strassburger, S., and

Mustafee, N. 2012. Bridging the Gap: A Standards-

Based Approach to OR/MS Distributed Simulation.

ACM Trans. Model. Comput. Simul. 22, 4, 1–23.

[13] U.S. Department of Defense. 1996. HLA Time

Management Design Document. Version 1.0.

August 15, 1996.

[14] U.S. Department of Defense. 1997. High Level

Architecture Run-Time Infrastructure

Programmer’s Guide (Version 1.0 Release 3).

[15] U.S. Department of Defense. 2002. RTI 1.3-Next

Generation Programmer’s Guide (Version 5).

[16] Vardanega, F. and Maziero, C. 2000. A Generic

Rollback Manager for Optimistic HLA Simulations.

In 4th IEEE International Workshop on Distributed

Simulation and Real Time Applications (DS-RT

2000), 79–85.

[17] Wang, X., Turner, S. J., Low, Malcolm Y. H., and

Gan, B. P. 2004. Optimistic Synchronization in

HLA Based Distributed Simulation. In 18th

Workshop on Parallel and Distributed Simulation,

123–130. DOI=10.1109/PADS.2004.1301293.

[18] Wang, X., Turner, S. J., Low, Malcolm Y. H., and

Gan, B. P. 2005. Optimistic Synchronization in

HLA-Based Distributed Simulation. SIMULATION

81, 4, 279–291.

Author Biography

STEFFEN STRASSBURGER is a professor at the

Ilmenau University of Technology and head of the

Department for Industrial Information Systems.

Previously he was head of the “Virtual Development”

department at the Fraunhofer Institute in Magdeburg,

Germany and a researcher at the DaimlerChrysler

Research Center in Ulm, Germany. He holds a Doctoral

and a Diploma degree in Computer Science from the

University of Magdeburg, Germany. He is further an

associate editor of the Journal of Simulation. His research

interests include distributed simulation, automatic

simulation model generation, and general interoperability

topics within the digital factory context. He is also the

Vice Chair of SISO’s COTS Simulation Package

Interoperability Product Support Group. His web page can

be found via www.tu-ilmenau.de/wi1. His email is

steffen.strassburger@tu-ilmenau.de.

http://www.tu-ilmenau.de/wi1
mailto:steffen.strassburger@tu-ilmenau.de

