HLA-based Logistic Simulation

Project experiences

27. Februar 2008

Dipl.-Inf. Michael Raab Prof. Dr.-Ing. habil. Thomas Schulze Prof. Dr.-Ing. Steffen Straßburger

Fraunhofer _{Institut} Fabrikbetrieb und -automatisierung

Contents

- 1. Preconditions
- 2. Intention
- 3. Requirements
- 4. Implementation
- 5. Summary & Demonstration
- 6. Outlook

Preconditions

- Production of vehicles
- Preexisting SLX simulation models, level of detail very high
 - To simulate assembly and paint processes
 - Originally developed to support factory design
 - Also been used to support factory operations
- One model can be used to simulate exactly one sub area of the entire factory, e.g. transmission assembly, paint shop, ...
- Interrelationships are not modeled and can't be investigated
- Preexisting models are generic → can be adapted to a special use case by editing a set of configuration data

Existing generic models

Original Layout of the factory

© Prof. Dr.-Ing. habil. Michael Schenk Fraunhofer Institut Fabrikbetrieb und -automatisierung

Production system

Fraunhofer _{Institut} Fabrikbetrieb und -automatisierung

vdtc Virtual Development and Training Centre

Project objectives

- Simulate the complex system
 - Investigate the dependencies between the different sub models
 - Dimensioning of buffers between the sub areas
 - Coordination of production schedules
 - Detection of bottlenecks in the complex system regarding the required throughput
- Reuse the existing simulation models
- Using the HLA as middleware for the distributed simulation
 - RTI 1.3NG
 - Expert knowledge from previous projects
 - Existing HLA-SLX Wrapper library

Requirements (1)

- 1. Simulation Management
 - Prepare the existing models to be connected using the HLA
 - Support the user in creating the Federation
 - Which model should be coupled? What's their relation?
 - Encapsulation of RTI-Services against the user
 - Start & Manage all Federates (Simulations) automatically

2. Extension of the existing models

- Creation of a "consistent" solution for all models
 - Utilization for both monolithic und distributed simulation runs

Requirements (2)

- 3. Modeling the flow of material and information
- Exchange of produced assembly parts between the different sub models
- Ensuring the access to relevant information which belong to other sub models (e.g. buffer fill level)
- 4. Carry out simulation experiments
- Parameterize the complex model
- Collect data about the complex model
- Calculate results (e.g. progress of the buffer fill level, waiting times)
- Visualization of the simulation processes

Federation Overview

Modeling the flow of material and information

- Problem to solve can be mapped on a standardized interoperability model (see WSC2007, Taylor et. al)
 - Type A.2 \rightarrow Synchronous entity passing using a bounded buffer

Realizing the flow of material and information

© Prof. Dr.-Ing. habil. Michael Schenk

Fraunhofer Institut Fabrikbetrieb und -automatisierung

vdtc Virtual Development and Training Centre

Seite 12

Extending the existing generic models

Run Experiments

Distributed Simulation Control Centre

🚂 Distributed Simu	lation Interface			_ 🗆 ×
Distribut	ted Simula	tion Co	ontrol Cen	tre
path to distributed M	fontenegro model bjects\Distributed Simula	select	1	
slx path				
C:\Programme\Wolverine\slx\se32.exe		select		
RTI path C:\Programme\HL4	AldsmolRTI1.3NG-V61	select		
simulation days	4			
warmup phase	0			
look ahead (in s)	60			
scenario name	TestScenario1	Simulate		
Log				
				<u> </u>
				*
elapsed real time	0			
elapsed sim time	0			Exit
progress				Exit

- written in C++ .Net
- Usage:
 - Start RTI
 - Load & Distribute Configuration
 - Start Simulation Models
 - Monitor Experiment at Runtime
 - Produce Simulation Results
 - Reports
 - · Animations

Collecting data

- Observer Federate is used to monitor the progress of the distributed simulation
- Preexisting information like:
 - Transfer of produced vehicle parts (Interaction)
 - Update of Buffer fill level (Attribute update)
- Additional data using HLA-Interactions:
 - Waiting times
 - Blocking due to overfull buffers
 - Due to assembly part deficits
 - Daily production statistics (e.g. Demand vs. Production)

Calculate & display simulation results

- Sub model related results:
 - Demand vs. Production
- Buffer related results:
 - Fill level (average, max, progress), throughput
- Relation Model-Buffer:
 - e.g. model waiting times due to full buffers of successor models
- Relation Model-Model:
 - Waiting times due to assembly part deficits (e.g. caused by a predecessor model which produces to slow)
- Simulation results are automatically generated, in form of html reports und MS Excel Charts

Visualize Simulation Progress

- Proof Animation
 - Production progress (started parts vs. finished parts)
 - Buffer (throughput, content)

Outlook

- Improvement of user-interface
 - Experiment configuration (define model structure & relationships)
 - Optimization with distributed models
 - Model administration
- •Validation of complex distributed models
- •Improvement of run-time performance
 - Investigating dynamic Lookaheads

Modellierung des Material- & Informationsflusses (1) - backup

