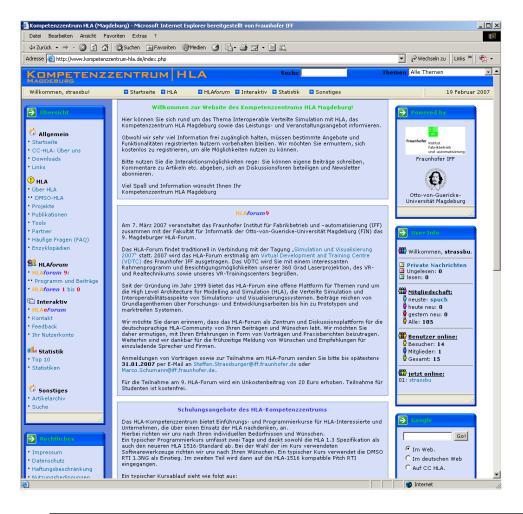
Vorstellung des HLA-Kompetenzzentrums Magdeburg und der Initiative "INCENTIVE"

Steffen Straßburger Marco Schumann

Übersicht

- 1. Kompetenzzentrum HLA
- 2. Arbeiten des Kompetenzzentrums
 - Verteilte VR und verteilte Interaktion in virtuellen Szenarien
 - Verteilte Simulation auf Basis des HLA-Standards
 - Kopplung von Simulations- und Geodatenstandards
- 3. Die Initiative "INCENTIVE"



Fraunhofer Institut **Fabrikbetrieb** und -automatisierung

Das Magdeburger HLA-Kompetenzzentrum

- Gründung 1999 durch Fraunhofer IFF und Otto-von-Guericke-Universität Magdeburg
- Bündlung von Kompetenzen auf Gebieten des damals neuen Standards der "High Level Architecture"
 - · Anwendungsentwicklung
 - Standardisierung
 - Weiterentwicklung
- Seit 1999 Durchführung des jährlichen HLA-Forums als Treffpunkt der deutschen HLA-Community
- Schulungsangebote an Firmen und Interessenten
- Referenzkunden: T-Systems, EADS, eSigma-Systems, MTG-Marinetechnik

Übersicht

- 1. Kompetenzzentrum HLA
- 2. Arbeiten des Kompetenzzentrums
 - Verteilte VR und verteilte Interaktion in virtuellen Szenarien
 - Verteilte Simulation auf Basis des HLA-Standards
 - Kopplung von Simulations- und Geodatenstandards
- 3. Die Initiative "INCENTIVE"

und -automatisierung

Arbeiten zur verteilten Interaktion in Multi-User-VR-Szenarien

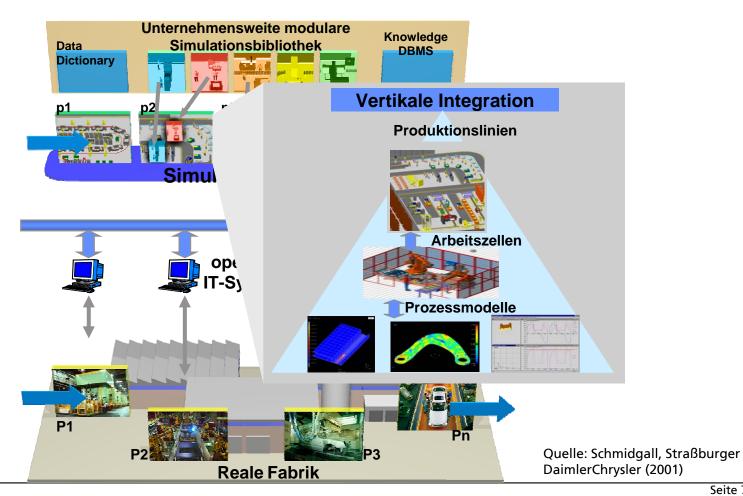
- Bewertung der Nutzung der HLA zur Kopplung von VR-Applikationen
 - Schumann, M.; Schenk, M.; Blümel, E. (2002). Distributed virtual worlds with HLA?, Simulation Interoperability Workshop, Fall 2002, Orlando, FL/USA
- Kopplung heterogener Systeme (VR / Nicht-VR)
 - Heutling, S.; Schumann, M.; Stuering, S. (2003). Interfacing Virtual Environment and Expert System via HLA, European Simulation Interoperability Workshop, Summer 2003, Stockholm, Sweden
- Konsistenzmanagement für einfache Interaktionen
 - Schumann, M. (2004). Managing Time and Consistency in Distributed, Interactive Real-time Applications Using the Example of a Virtual Training Environment, In: ASIM 2004 conference, Berlin, Germany

© Prof. Dr.-Ing. habil. Michael Schenk Fraunhofer IFF Magdeburg, 2007

Seite 5

Untersuchungen zum Einsatz der High Level Architecture als Standard zur Kopplung von Simulationen im zivilen Bereich

- Möglichkeiten der Integration "ziviler" Simulatoren in die HLA
- Erschließung ziviler Anwendungspotentiale, z.B.
 - Globale Optimierung durch gesamtheitliche Betrachtung (z.B. einzelner Fertigungsbereiche)
 - Wiederverwendbarkeit von Simulationsmodellen
 - Erstellung von Modellen durch Wiederverwendung und Kombination bereits existierender, modular aufgebauter Modelle
 - Geheimhaltungsaspekte
 - Integration von Zulieferermodellen ohne Wissen über internen Aufbau und Kennzahlen möglich
 - Möglichkeit der geographischen Verteilung
 - Beschleunigung der Programmausführung möglich



Verteilte Simulation im Kontext der Digitalen Fabrik

Vision

Legende:

P1-PN: reale Prozesse p1-pn: simulierte Prozesse

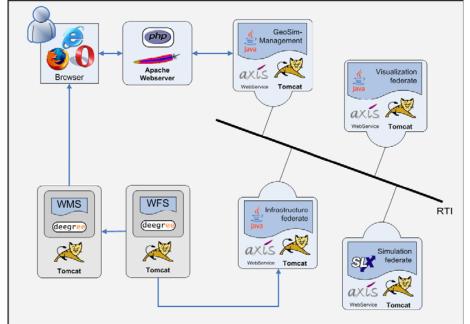
© Prof. Dr.-Ing. habil. Michael Schenk Fraunhofer IFF Magdeburg, 2007

Seite 7

Kopplung von Interoperabiltätsstandards zur verteilten Simulation und Geolnformationssystemen

Anwendungsbeispiel Emergency Management

Problemstellung


Entscheidungsprozesse mit sehr kurzen Bearbeitungszeiten

 Notfällen, bei Naturkatastrophen oder bei Industrieunfällen sind schnelle und möglichst optimale Entscheidungen zum Schutz von Menschenleben

notwendig

Lösung

- Nutzung von vernetzten Strukturen
- Integration in bestehende IT-Lösungen
- Verschmelzung von Interoperabiltätsstandards zur verteilten Simulation und GeoInformationssystemen

Seite 8

Übersicht

- 1. Kompetenzzentrum HLA
- 2. Arbeiten des Kompetenzzentrums
 - Verteilte VR und verteilte Interaktion in virtuellen Szenarien
 - Verteilte Simulation auf Basis des HLA-Standards
 - Kopplung von Simulations- und Geodatenstandards
- 3. Die Initiative "INCENTIVE"

IFF
Institut
Fabrikbetrieb
und -automatisierung

INCENTIVE – Eine Initiative des Fraunhofer IFF zum Aufbau eines Zentrums für Innovationskompetenz

- Zentren für Innovationskompetenz ein Förderinstrument des BMBF für die neuen Bundenländer
 - 1. Förderphase: Förderung der 1-jährigen Strategieentwicklung für ein ZIK mit 250.000 Euro
 - 2. Förderphase: Förderung von mindestens einer
 Nachwuchsforschergruppe über 5 Jahre mit bis zu 5 Millionen Euro
- INCENTIVE ist das "Innovation and Research Centre for Distributed, Interoperable Virtual Reality and Simulation in Industry and Education"
 - Aufbau auf Tradition und Vorarbeiten des HLA-Kompetenzzentrums
 - Identifikation von Industrie- und Forschungsbedarfen ist Bestandteil der aktuellen Strategieentwicklungsphase

INCENTIVE

Innovation and Research Centre for Distributed, Interoperable Virtual Reality and Simulation in Industry and Education

Prof. Dr.-Ing. habil M. Schenk

Fraunhofer Institut für Fabrikbetrieb und – automatisierung

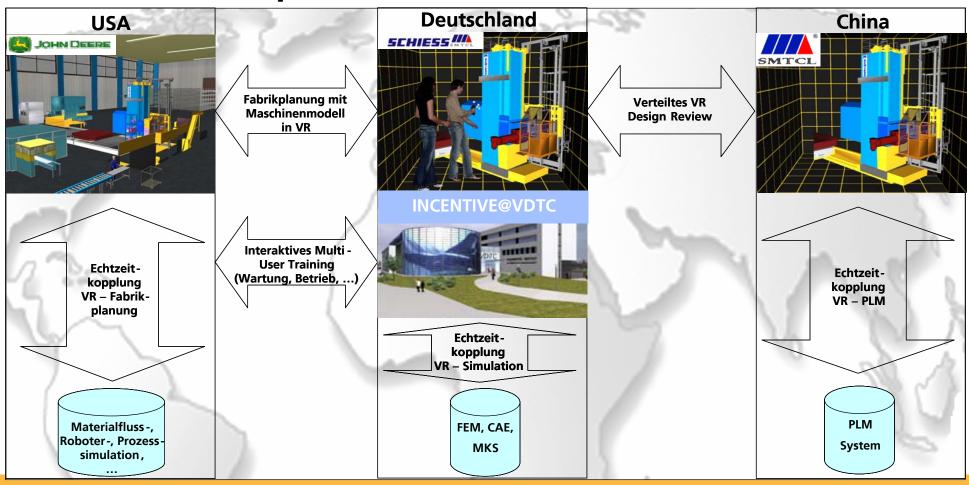
Ideen zünden!

I. Kompetenzfeld (1/4)

- Methoden und Anwendungen von verteilten interaktiven und interoperablen Simulationen und Visualisierungen
 - Verteilte Simulation ganzer Prozessketten über verschiedene Betrachtungsebenen und Detaillierungsstufen
 - Systematische Integration von Spezialsoftware (Expertenwerkzeuge) in Visualisierungsumgebungen
 - Interaktive Virtual Reality Umgebungen weltweit verteilter Benutzer
- Strategische Bedeutung für global agierende Unternehmen
 - Technologieführerschaft bzgl. verteilter Entwicklung von Produkten und Produktionssystemen und deren Betrieb
 - Befähigung kleinerer und mittelständischer Betriebe zur Mitwirkung in Unternehmensnetzwerken

I. Kompetenzfeld (2/4)

- Adressierte Dimensionen von "Interoperabilität"
 - *Interoperabilität von IT-Systemen* ermöglicht die Kopplung verschiedenster Systeme (VR, Simulation, ...) zur Lösung einer Problemstellung
 - Interoperabilität von Menschen ermöglicht es mehreren Nutzern miteinander unter Nutzung von IT-Systemen zu interagieren (z.B. in einem virtuellen Szenario)
 - Interoperabilität zwischen verschiedenen Orten ermöglicht die Vernetzung und Kooperation von IT-Systemen und Menschen an mehreren Standorten



I. Kompetenzfeld (3/4)- Beispielszenario

Ideen zünden!

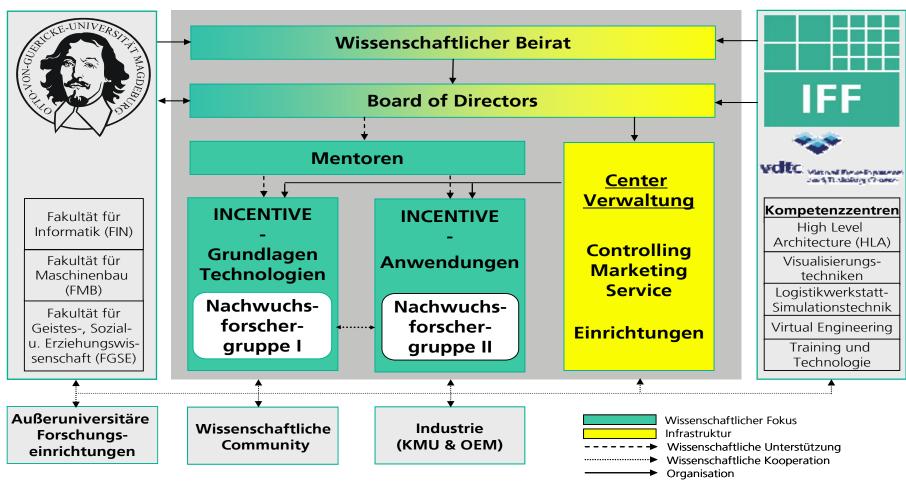
I. Kompetenzfeld (4/4)

- Alleinstellungsmerkmale
 - Fachliche Kompetenz in den Bereichen Virtual Reality, verteilte Simulation und Interoperabilitätsstandards (z.B. HLA)
 - Vorreiterrolle und Stellung in der Forschungsgemeinde bzgl. der Untersuchung von zivilen Anwendungen verteilter Simulation und Visualisierung
- Interdisziplinärer Ansatz
 - Wechselspiel zwischen Untersuchung informationstechnischer Grundlagen und Erschließung neuer Anwendungsgebiete
 - Enge Kooperation mit verschiedenen Fachdisziplinen der Otto-von-Guericke Universität
 - Gemeinsame Forschungsprojekte (Virtual Engineering, Bildverarbeitung, ...)
 - Gemeinsame Lehrangebote (Gastvortragsreihen und reguläre Vorlesungen, z.B. VR und AR)
 - Gemeinsame Organisation von Konferenzen (Wissenschaftstage, SimVis, HLA-Forum, ...)
 - Gemeinsame Betreuung internationaler Austauschstudenten (Marie Curie Programm)

II. Kurzprofil der Initiative (1/2)

- Ausgangspunkt: Einzigartige Forschungsinfrastruktur am Virtual Development and Training Centre (VDTC) des Fraunhofer IFF
 - Hochmoderne Projektions- und Visualisierungstechnologien
 - 360° Laserprojektionstechnik
 - Real-Technikum, Rechnerlabore und VR-Technika
 - Kompetenznetzwerk ViVERA (BMBF)

- Führende Universitäten (Georgia Institute of Technology, University of Michigan, Iowa State University, ...)
- Aktive Rolle in der Simulation Interoperabilty Standards Organization (SISO)
- EU-Projekte (INTUITION, HILAS, VIRTHUALIS, ...)
- Einbindung wichtiger Institutionen am Standort Magdeburg
 - Beteiligung von drei Fakultäten der Otto-von-Guericke-Universität (Informatik, Maschinenbau, Erziehungswissenschaften)
 - Leibniz-Institut für Neurobiologie
- Industriepartner (Schiess GmbH, Airbus, Deere & Co., u.a.)



II. Kurzprofil der Initiative (2/2)

Unterstützung und Kooperation

Aktuelle Entwicklungen

Pilotprojekt mit Fa. Deere & Co.

- Verteilte Simulation von mehreren Fertigungsabschnitten (Montage, Lackiererei)
- Konzeptionelle Diskussionen zum Einsatz von verteilter Simulation und Virtual Reality für Fabrikplanung und Werkertraining

Dialog mit und kritische Kommentare von Besuchern des HLA-Forums ausdrücklich erwünscht!

Zusammenfassung

- INCENTIVE untersucht Methoden und Anwendungen von verteilten interaktiven und interoperablen Simulationen und Visualisierungen im industriellen Bereich
- INCENTIVE trifft am VDTC des Fraunhofer IFF auf ideale infrastrukturelle Voraussetzungen
- INCENTIVE kooperiert eng und interdisziplinär mit der Universität Magdeburg und schafft dort neue Studien- und Lehrangebote
- Die Strategieentwicklungsphase identifiziert technologische Entwicklungslinien und Zielmärkte und untersetzt die Vorgehensweise für die erfolgreiche Etablierung von INCENTIVE.